我只是查看Python模块SymPy,并尝试作为一个简单(无用)的示例,在给定的时间间隔内将函数f(x)与函数set g_i(x)拟合.
import sympy as sym
def functionFit(f,funcset,interval):
N = len(funcset) - 1
A = sym.zeros(N+1,N+1)
b = sym.zeros(N+1,1)
x = sym.Symbol('x')
for i in range(N+1):
for j in range(i,N+1):
A[i,j] = sym.integrate(funcset[i]*funcset[j],(x,interval[0],interval[1]))
A[j,i] = A[i,j]
b[i,0] = sym.integrate(funcset[i]*f,interval[1]))
c = A.LUsolve(b)
u = 0
for i in range(len(funcset)):
u += c[i,0]*funcset[i]
return u,c
x = sym.Symbol('x')
f = 10*sym.cos(x)+3*sym.sin(x)
fooset=(sym.sin(x),sym.cos(x))
interval = (1,2)
print("function to approximate:",f)
print("Basic functions:")
for foo in fooset:
print(" - ",foo)
u,c = functionFit(f,fooset,interval)
print()
print("simplified u:")
print(sym.simplify(u))
print()
print("simplified c:")
print(sym.simplify(c))
结果是要返回的拟合函数u(x)以及functionFit的系数.
就我而言
f(x) = 10 * sym.cos(x) + 3 * sym.sin(x)
我想根据sin(x),cos(x)的线性组合来拟合它.
因此系数应为3和10.
结果很好,但是对于u(x)我得到
u(x) = (12*sin(2)**2*sin(4)*sin(x) + 3*sin(8)*sin(x) + 12*sin(2)*sin(x) + 40*sin(2)**2*sin(4)*cos(x) + 10*sin(8)*cos(x) + 40*sin(2)*cos(x))/(2*(sin(4) + 2*sin(2))) :
Function to approximate: 3*sin(x) + 10*cos(x)
Basic functions:
- sin(x)
- cos(x)
Simplified u: (12*sin(2)**2*sin(4)*sin(x) + 3*sin(8)*sin(x) + 12*sin(2)*sin(x) + 40*sin(2)**2*sin(4)*cos(x) + 10*sin(8)*cos(x) + 40*sin(2)*cos(x))/(2*(sin(4) + 2*sin(2)))
Simplified c: Matrix([[3],[10]])
的确与10 * cos(x)3 * sin(x)相同.
但是,我想知道为什么不将其简化为该表达.我尝试了几种可用的简化函数,但没有一个能提供预期的结果.
我的代码有什么问题吗?还是我的期望很高?
最佳答案
原文链接:https://www.f2er.com/python/533138.html