python-按列标题排列DataFrame列

前端之家收集整理的这篇文章主要介绍了python-按列标题排列DataFrame列 前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我有两个熊猫数据框,每个都有不同的大小,每个记录超过100万条.
我希望比较这两个数据框并找出差异.

数据框

ID   Name    Age  Sex
1A1  Cling   21    M
1B2  Roger   22    M
1C3  Stew    23    M

数据框

ID   FullName   Gender  Age
1B2  Roger       M       21
1C3  Rick        M       23
1D4  Ash         F       21

DataFrameB将始终具有比DataFrameA多的记录,但是在DataFrameA中找到的记录可能仍然不在DataFrameB中.
DataFrameA和DataFrameB中的列名称不同.我将映射存储在另一个数据框中.

MappingDataFrame

DataFrameACol   DataFrameBCol
ID               ID
Name             FullName
Age              Age
Sex              Gender

我正在寻找比较这两者,并在结果旁边添加一列.

DataFrame A的列名加法器=“ _A_Txt”

数据框B的列名加法器=“ _B_Txt”

预期产量

ID   Name_A_Txt FullName_B_Text   Result_Name   Age_A_Txt  Age_B_Txt   Result_Age     
1B2  Roger           Roger          Match        ...        ...
1C3  Stew            Rick           No Match     ...        ...

名称之前应添加文本.

我目前正在使用For循环来构建此逻辑.但是,要完成一百万条记录需要花费很多时间.我让程序运行了超过50分钟,但并没有像实时那样完成,我正在为100多个列构建程序.

我将为这个问题打开赏金并授予赏金,即使在打开它作为奖励之前已经回答了该问题.因为,我一直在为使用For循环迭代而为性能而苦苦挣扎.

要以DataFrameA和DataFrameB开头,请使用以下代码,

import pandas as pd

d = {
     'ID':['1A1','1B2','1C3'],'Name':['Cling','Roger','Stew'],'Age':[21,22,23],'Sex':['M','M','M']
     }

DataFrameA = pd.DataFrame(d)

d = {
     'ID':['1B2','1C3','1D4'],'FullName':['Roger','Rick','Ash'],'Gender':['M','F'],23,21]
     }

DataFrameB = pd.DataFrame(d)

我相信,这个问题与Coldspeed提供的建议(对联接的定义)有些不同,因为它还涉及查找不同的列名并添加新的结果列.同样,列名需要在结果端进行转换.

OutputDataFrame如下所示,

为了更好地理解读者,我在专栏中
按行中的名称

Col 1 -  ID (Coming from DataFrameA)
Col 2 -  Name_X (Coming from DataFrameA)
Col 3 -  FullName_Y (Coming from DataFrameB)
Col 4 -  Result_Name (Name is what is there in DataFrameA and this is a comparison between Name_X and FullName_Y)
Col 5 -  Age_X (Coming from DataFrameA)
Col 6 -  Age_Y (Coming From DataFrameB)
Col 7 -  Result_Age (Age is what is there in DataFrameA and this is a result between Age_X and Age_Y)
Col 8 -  Sex_X (Coming from DataFrameA)
Col 9 -  Gender_Y (Coming from DataFrameB)
Col 10 - Result_Sex (Sex is what is there in DataFrameA and this is a result between Sex_X and Gender_Y)
最佳答案
m = list(mapping_df.set_index('DataFrameACol')['DataFrameBCol']
                   .drop('ID')
                   .iteritems())
m[m.index(('Age','Age'))] = ('Age_x','Age_y')
m 
# [('Name','FullName'),('Age_x','Age_y'),('Sex','Gender')]

从内部合并开始:

df3 = (df1.merge(df2,how='inner',on=['ID'])
          .reindex(columns=['ID',*(v for V in m for v in V)]))

df3
    ID   Name FullName  Age_x  Age_y Sex Gender
0  1B2  Roger    Roger     22     21   M      M
1  1C3   Stew     Rick     23     23   M      M

现在,比较列并使用np.where设置值:

l,r = map(list,zip(*m))
matches = (df3[l].eq(df3[r].rename(dict(zip(r,l)),axis=1))
                 .add_prefix('Result_')
                 .replace({True: 'Match',False: 'No Match'}))

for k,v in m:
    name = f'Result_{k}'
    df3.insert(df3.columns.get_loc(v)+1,name,matches[name])
df3.columns
# Index(['ID','Name','FullName','Result_Name','Age_x','Age_y',#        'Result_Age_x','Sex','Gender','Result_Sex'],#       dtype='object')

df3.filter(like='Result_')

  Result_Name Result_Age_x Result_Sex
0       Match     No Match      Match
1    No Match        Match      Match
原文链接:https://www.f2er.com/python/533058.html

猜你在找的Python相关文章