python数据格式化pprint的简单示例

前端之家收集整理的这篇文章主要介绍了python数据格式化pprint的简单示例前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
对python这个高级语言感兴趣的小伙伴,下面一起跟随编程之家 jb51.cc的小编两巴掌来看看吧!

pprint – 美观打印

作用:美观打印数据结构

pprint 包含一个“美观打印机”,用于生成数据结构的一个美观视图。格式化工具会生成数据结构的一些表示,不仅可以由解释器正确地解析,而且便于人类阅读。输出尽可能放在一行上,分解为多行时则需要缩进。

以下实例用用到的data包含一下数据

data = [(1,{'a':'A','b':'B','c':'C','d':'D'}),

(2,{'e':'E','f':'F','g':'G','h':'H',

'i':'I','j':'J','k':'K','l':'L'

}),

]

1、 打印

要使用这个模块,最简单的方法就是利用pprint()函数


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

from pprint import pprint
print 'PRINT:'
print data
print 
print 'PPRINT:'
pprint(data)

# End www.jb51.cc

运行结果:


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

PRINT:
[(1,{'a': 'A','c': 'C','b': 'B','d': 'D'}),(2,{'e': 'E','g': 'G','f': 'F','i': 'I','h': 'H','k': 'K','j': 'J','l': 'L'})]
PPRINT:
[(1,'l': 'L'})]

# End www.jb51.cc

pprint()格式化一个对象,并把它写至一个数据流,这个数据流作为参数传入(或者是默认的sys.stdout)

注意为什么第二个字典中会显示一竖列,因为pprint打印支持8个对象以上的竖列打印

 

2、 格式化

格式化一个数据结构而不把它直接写至一个流(例如用于日志记录),可以使用pformat()来构造一个字符串表示。


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

import logging
from pprint import pformat
logging.basicConfig(level = logging.DEBUG,format = '%(levelname)-8s %(message)s',)
logging.debug('Logging pformatted data')
formatted = pformat(data)
for line in formatted.splitlines():
    logging.debug(line.rstrip())

# End www.jb51.cc

运行结果:


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

DEBUG    Logging pformatted data
DEBUG    [(1,DEBUG     (2,DEBUG      {'e': 'E',DEBUG       'f': 'F',DEBUG       'g': 'G',DEBUG       'h': 'H',DEBUG       'i': 'I',DEBUG       'j': 'J',DEBUG       'k': 'K',DEBUG       'l': 'L'})]

# End www.jb51.cc

然后可以单独低打印格式化的字符串或者计入日志

splitlines() 按行分割()

rstrip()去除右边的空格 lstrip()去除左边的空格 strip()去除两边空格。默认为去除空格,也可以传入需要从两边或者其中一边去除的字符,如strip(‘a’)就是去除字符串两边的字符’a’

3、 任意类

如果定制类定义了一个__repr__()方法,pprint()使用的PrettyPrinter类还可以处理这些定制类。


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

from pprint import pprint 
class node(object):
    def __init__(self,name,contents =[]):
        self.name = name
        self.contents = contents[:]
    def __repr__(self):
        return ('node(' + repr(self.name) + ',' +
                repr(self.contents) + ')'
                )
trees = [node('node-1'),node('node-2',[node('node-2-1')]),node('node-3',[node('node-3-1')]),]
pprint(trees)

# End www.jb51.cc

运行结果:


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

[node('node-1',[]),[node('node-2-1',[])]),[node('node-3-1',[])])]

# End www.jb51.cc

由PrettyPrinter组合嵌套对象的表示,从而返回完整字符串表示。

4、 递归

递归数据结构有指向原数据源的引用来表示,形式为<Recursion on typename with id=number>。


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

from pprint import pprint 
local_data = ['a','b',1,2]
local_data.append(local_data)
print 'id(local_data) =>',id(local_data)
pprint(local_data)
print local_data

# End www.jb51.cc

运行结果:


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

id(local_data) => 47458332363520
['a',2,<Recursion on list with id=47458332363520>]
['a',[...]]

# End www.jb51.cc

在这个例子中,列表local_data增加到了其自身,这会创建一个递归引用

内置函数id()作用是获得对象的id值,理论上讲每个对象都有一个id值,如果是整数和字符串((相对较小的时候)),那么相同的值会有相同的id值,但是如果是类,及时相同也会有不同的id值。测试如下:


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

#int or float or lon 都一样(比较小的时候)
a = 65464131311513l
b = 65464131311513l
c = 65464131311513l
print id(a)
print id(b)
print id(c)
print
a = '12312312'
b = '12312312'
c = '12312312'
print id(a)
print id(b)
print id(c)
print 
a = 65464131311513l*11
b = 65464131311513l*11
c = 65464131311513l*11
print id(a)
print id(b)
print id(c)
print
a = '12312312'*11
b = '12312312'*11
c = '12312312'*11
print id(a)
print id(b)
print id(c)
print 
class Test(object):
    def __init__(self):
        pass
a = Test()
b = Test()
c = Test()
print id(a)
print id(b)
print id(c)
print

# End www.jb51.cc

测试结果:

47010342174992

47010342174992

47010342174992

 

47010343272096

47010343272096

47010343272096

 

47010343261568

47010343261648

47010343261688

 

47010343200944

47010343199152

47010343202352

 

47010343252304

47010343252944

47010343253008

5、 限制嵌套输出

对于非常深的数据结构,可能不要求输出包含所有细节。有可能数据没有是当地格式化,也可能格式化文本过大而无法管理,或者默写数据时多余的。


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

from pprint import pprint 
print 'depth 1 :'
pprint(data,depth=1)
print 
print 'depth 2 :'
pprint(data,depth=2)
print 
print 'depth 3 :'
pprint(data,depth=3)

# End www.jb51.cc

运行结果:


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

depth 1 :
[(...),(...)]
depth 2 :
[(1,{...}),{...})]
depth 3 :
[(1,'l': 'L'})]

# End www.jb51.cc

使用depth参数可以控制美观打印机递归处理嵌套数据结构的深度。输出中未包含的层次由一个省略号表示

6、 控制输出宽度

格式化文本的默认输出宽度为80列。要调整这个宽度,可以再pprint()中使用参数width。


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

from pprint import pprint
for width in [80,5]:
    print 'WIDTH = ',width
    pprint(data,width = width)
    print

# End www.jb51.cc

运行结果:


# @param python数据格式化之pprint
# @author 编程之家 jb51.cc|www.jb51.cc 

WIDTH =  80
[(1,'l': 'L'})]
WIDTH =  5
[(1,'l': 'L'})]

# End www.jb51.cc

宽度大小不能适应格式化数据结构时,如果斩断或转行会引入非法的语法,就不会进行截断或转行。

原文链接:https://www.f2er.com/python/527241.html

猜你在找的Python相关文章