多线程概述
多线程使得程序内部可以分出多个线程来做多件事情,充分利用cpu空闲时间,提升处理效率。python提供了两个模块来实现多线程thread 和threading ,thread 有一些缺点,在threading 得到了弥补。并且在Python3中废弃了thread模块,保留了更强大的threading模块。
使用场景
在python的原始解释器CPython中存在着GIL(Global Interpreter Lock,全局解释器锁),因此在解释执行python代码时,会产生互斥锁来限制线程对共享资源的访问,直到解释器遇到I/O操作或者操作次数达到一定数目时才会释放GIL。所以,虽然CPython的线程库直接封装了系统的原生线程,但CPython整体作为一个进程,同一时间只会有一个获得GIL的线程在跑,其他线程则处于等待状态。这就造成了即使在多核cpu中,多线程也只是做着分时切换而已。
如果你的程序是cpu密集型,多个线程的代码很有可能是线性执行的。所以这种情况下多线程是鸡肋,效率可能还不如单线程因为有上下文切换开销。但是如果你的代码是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,多线程可以明显提高效率,例如多线程爬虫,多线程文件处理等等
多线程爬虫
多线程爬虫的代码实例
注: 以下代码在python3下运行通过, python2版本差异较大,不能运行成功,如需帮助请下方留意。
# @param Python3多线程爬虫实例讲解
# @author 编程之家 jb51.cc|www.512Pic.com
# coding=utf-8
import threading,queue,time,urllib
from urllib import request
baseUrl = 'http://jb51.cc/html/pythonjichu/'
urlQueue = queue.Queue()
for i in range(2,10):
url = baseUrl + str(i) + '.html'
urlQueue.put(url)
#print(url)
def fetchUrl(urlQueue):
while True:
try:
#不阻塞的读取队列数据
url = urlQueue.get_nowait()
i = urlQueue.qsize()
except Exception as e:
break
print ('Current Thread Name %s,Url: %s ' % (threading.currentThread().name,url))
try:
response = urllib.request.urlopen(url)
responseCode = response.getcode()
except Exception as e:
continue
if responseCode == 200:
#抓取内容的数据处理可以放到这里
#为了突出效果, 设置延时
time.sleep(1)
if __name__ == '__main__':
startTime = time.time()
threads = []
# 可以调节线程数, 进而控制抓取速度
threadNum = 4
for i in range(0,threadNum):
t = threading.Thread(target=fetchUrl,args=(urlQueue,))
threads.append(t)
for t in threads:
t.start()
for t in threads:
#多线程多join的情况下,依次执行各线程的join方法,这样可以确保主线程最后退出, 且各个线程间没有阻塞
t.join()
endTime = time.time()
print ('Done,Time cost: %s ' % (endTime - startTime))
# End www.jb51.cc
运行结果:
1个线程时:
<style type="text/css">p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px 'Bitstream Vera Sans Mono'; color: #29f914; background-color: #000000} span.s1 {font-variant-ligatures: no-common-ligatures}</style>
# @param Python3多线程爬虫实例讲解
# @author 编程之家 jb51.cc|www.512Pic.com
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/2.html
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/3.html
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/4.html
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/5.html
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/6.html
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/7.html
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/8.html
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/9.html
Done,Time cost: 8.182249069213867
# End www.jb51.cc
2个线程时:
<style type="text/css">p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px 'Bitstream Vera Sans Mono'; color: #29f914; background-color: #000000} span.s1 {font-variant-ligatures: no-common-ligatures}</style>
# @param Python3多线程爬虫实例讲解
# @author 编程之家 jb51.cc|www.512Pic.com
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/2.html
Current Thread Name Thread-2,Url: http://jb51.cc/html/pythonjichu/3.html
Current Thread Name Thread-2,Url: http://jb51.cc/html/pythonjichu/5.html
Current Thread Name Thread-2,Url: http://jb51.cc/html/pythonjichu/7.html
Current Thread Name Thread-2,Time cost: 4.0987958908081055
# End www.jb51.cc
3个线程时:
<style type="text/css">p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px 'Bitstream Vera Sans Mono'; color: #29f914; background-color: #000000} span.s1 {font-variant-ligatures: no-common-ligatures}</style>
# @param Python3多线程爬虫实例讲解
# @author 编程之家 jb51.cc|www.512Pic.com
Current Thread Name Thread-1,Url: http://jb51.cc/html/pythonjichu/3.html
Current Thread Name Thread-3,Url: http://jb51.cc/html/pythonjichu/4.html
Current Thread Name Thread-4,Url: http://jb51.cc/html/pythonjichu/6.html
Current Thread Name Thread-4,Url: http://jb51.cc/html/pythonjichu/9.html
Current Thread Name Thread-3,Url: http://jb51.cc/html/pythonjichu/8.html
Done,Time cost: 2.287320137023926
# End www.jb51.cc
通过调节线程数可以看到,执行时间会随着线程数的增加而缩短,抓取效率成正比增加。
总结:
Python多线程在IO密集型任务,多线程可以明显提高效率,cpu密集型任务不适合使用多线程处理。