Python生成器(Generator)入门实例

前端之家收集整理的这篇文章主要介绍了Python生成器(Generator)入门实例前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
对python这个高级语言感兴趣的小伙伴,下面一起跟随编程之家 jb51.cc的小编两巴掌来看看吧!

我们可以通过列表生成式简单直接地创建一个列表,但是受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,而且如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。

 

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:


>>> mylist = [ x for x in range(1,10)]
>>> mylist
[1,2,3,4,5,6,7,8,9]
>>> gen = (x for x in range(1,10))
>>> gen
<generator object <genexpr> at 0x7f1d7fd0f5a0>

# End www.jb51.cc

创建mylist和gen的区别仅在于最外层的[]和(),mylist是一个list,而gen是一个generator(生成器)。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过generator的next()方法


>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
3
...
>>> gen.next()
9
>>> gen.next()
Traceback (most recent call last):
  File "<stdin>",line 1,in <module>
StopIteration

# End www.jb51.cc

我们讲过,generator保存的是算法,每次调用next(),就计算出下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误

 

其实我们可以使用for循环来代替next()方式, 这样才更符合高效的编程思路:


>>> gen = ( x for x in range(1,10))
>>> for num in gen:
...     print num
... 
1
2
3
4
5
6
7
8
9

# End www.jb51.cc

 

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

 

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:


1,1,13,21,34,...

# End www.jb51.cc

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:


# @param 深入理解Python生成器(Generator)
# @author 编程之家 jb51.cc|www.jb51.cc 

def fib(max):
    n = 0 
    a,b = 0,1
    while n < max:
        print b
        a,b = b,a + b
        n = n + 1

# End www.jb51.cc

上面的函数可以输出斐波那契数列的前N个数:


>>> fib(6)
1
1
2
3
5
8

# End www.jb51.cc

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

 

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print b改为yield b就可以了:


# @param 深入理解Python生成器(Generator)
# @author 编程之家 jb51.cc|www.jb51.cc 

def fib(max):
    n = 0 
    a,1
    while n < max:
        yield b
        a,a + b
        n = n + 1

# End www.jb51.cc

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:


>>> fib(6)
<generator object fib at 0x104feaaa0>

# End www.jb51.cc

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

 

举个简单的例子,定义一个generator,依次返回数字1,3,5:


>>> def odd():
...     print 'step 1'
...     yield 1
...     print 'step 2'
...     yield 3
...     print 'step 3'
...     yield 5
...
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()
Traceback (most recent call last):
  File "<stdin>",in <module>
StopIteration

# End www.jb51.cc

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next()就报错。

 

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

 

同样的,把函数改成generator后,我们基本上从来不会用next()来调用它,而是直接使用for循环来迭代:


>>> for n in fib(6):
...     print n
...
1
1
2
3
5
8

# End www.jb51.cc

generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

猜你在找的Python相关文章