python程序中的线程操作 concurrent模块使用详解

前端之家收集整理的这篇文章主要介绍了python程序中的线程操作 concurrent模块使用详解前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

一、concurrent模块的介绍

concurrent.futures模块提供了高度封装的异步调用接口

ThreadPoolExecutor:线程池,提供异步调用

ProcessPoolExecutor:进程池,提供异步调用

ProcessPoolExecutorThreadPoolExecutor:两者都实现相同的接口,该接口由抽象Executor类定义。

二、基本方法

submit(fn,*args,**kwargs) :异步提交任务

map(func,*iterables,timeout=None,chunksize=1) :取代for循环submit的操作

shutdown(wait=True) :相当于进程池的pool.close()+pool.join()操作

@H_502_40@
  • wait=True,等待池内所有任务执行完毕回收完资源后才继续
  • wait=False,立即返回,并不会等待池内的任务执行完毕
  • 但不管wait参数为何值,整个程序都会等到所有任务执行完毕
  • submit和map必须在shutdown之前
  • result(timeout=None) :取得结果

    add_done_callback(fn) :回调函数

    三、进程池和线程池

    池的功能:限制进程数或线程数.

    什么时候限制: 当并发的任务数量远远大于计算机所能承受的范围,即无法一次性开启过多的任务数量 我就应该考虑去限制我进程数或线程数,从保证服务器不崩.

    3.1 进程池

    from concurrent.futures import ProcessPoolExecutor
    from multiprocessing import Process,current_process
    import time
    def task(i):
      print(f'{current_process().name} 在执行任务{i}')
      time.sleep(1)
    if __name__ == '__main__':
      pool = ProcessPoolExecutor(4) # 进程池里又4个进程
      for i in range(20): # 20个任务
        pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个进程一次一次执行任务

    3.2 线程池

    from concurrent.futures import ThreadPoolExecutor
    from threading import Thread,currentThread
    import time
    def task(i):
      print(f'{currentThread().name} 在执行任务{i}')
      time.sleep(1)
    if __name__ == '__main__':
      pool = ThreadPoolExecutor(4) # 进程池里又4个线程
      for i in range(20): # 20个任务
        pool.submit(task,i)# 线程池里当前执行的任务i,池子里的4个线程一次一次执行任务

    四、Map的用法

    from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
    import os,time,random
    def task(n):
      print('%s is runing' %os.getpid())
      time.sleep(random.randint(1,3))
      return n**2
    if __name__ == '__main__':
      executor=ThreadPoolExecutor(max_workers=3)
      # for i in range(20):
      #   future=executor.submit(task,i)
      executor.map(task,range(1,21)) #map取代了for+submit

    五、同步和异步

    理解为提交任务的两种方式

    同步: 提交了一个任务,必须等任务执行完了(拿到返回值),才能执行下一行代码

    异步: 提交了一个任务,不要等执行完了,可以直接执行下一行代码.

    同步:相当于执行任务的串行执行

    异步

    from concurrent.futures import ProcessPoolExecutor
    from multiprocessing import Process,current_process
    import time
    n = 1
    def task(i):
      global n
      print(f'{current_process().name} 在执行任务{i}')
      time.sleep(1)
      n += i
      return n
    if __name__ == '__main__':
      pool = ProcessPoolExecutor(4) # 进程池里又4个线程
      pool_lis = []
      for i in range(20): # 20个任务
        future = pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个线程一次一次执行任务
        # print(future.result()) # 这是在等待我执行任务得到的结果,如果一直没有结果,这里会导致我们所有任务编程了串行
                    # 在这里就引出了下面的pool.shutdown()方法
        pool_lis.append(future)
      pool.shutdown(wait=True) # 关闭了池的入口,不允许在往里面添加任务了,会等带所有的任务执行完,结束阻塞
      for p in pool_lis:
        print(p.result())
      print(n)# 这里一开始肯定是拿到0的,因为我只是去告诉操作系统执行子进程的任务,代码依然会继续往下执行
      # 可以用join去解决,等待每一个进程结束后,拿到他的结果

    六、回调函数

    import time
    from threading import Thread,currentThread
    from concurrent.futures import ThreadPoolExecutor
    def task(i):
      print(f'{currentThread().name} 在执行{i}')
      time.sleep(1)
      return i**2
    
    # parse 就是一个回调函数
    def parse(future):
      # 处理拿到的结果
      print(f'{currentThread().name} 结束了当前任务')
      print(future.result())
    if __name__ == '__main__':
      pool = ThreadPoolExecutor(4)
      for i in range(20):
        future = pool.submit(task,i)
        '''
        给当前执行的任务绑定了一个函数,在当前任务结束的时候就会触发这个函数(称之为回调函数)
        会把future对象作为参数传给函数
        注:这个称为回调函数,当前任务处理结束了,就回来调parse这个函数
        '''
        future.add_done_callback(parse)
        # add_done_callback (parse) parse是一个回调函数
        # add_done_callback () 是对象的一个绑定方法,他的参数就是一个函数

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

    猜你在找的Python相关文章