使用Python实现正态分布、正态分布采样

前端之家收集整理的这篇文章主要介绍了使用Python实现正态分布、正态分布采样前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

多元正态分布(多元高斯分布)

直接从多元正态分布讲起。多元正态分布公式如下:

使用Python实现正态分布、正态分布采样


这就是多元正态分布的定义,均值好理解,就是高斯分布的概率分布值最大的位置,进行采样时也就是采样的中心点。而协方差矩阵在多维上形式较多。

协方差矩阵

一般来说,协方差矩阵有三种形式,分别称为球形、对角和全协方差。以二元为例:

使用Python实现正态分布、正态分布采样


为了方便展示不同协方差矩阵的效果,我们以二维为例。(书上截的图,凑活着看吧,是在不想画图了)

使用Python实现正态分布、正态分布采样


其实从这个图上可以很好的看出,协方差矩阵对正态分布的影响,也就很好明白了这三个协方差矩阵是哪里来的名字了。可以看出,球形协方差矩阵,会产生圆形(二维)或者球形(三维)的等高线,对角协方差矩阵和全协方差矩阵,会产生椭圆形的等高线。更一般地,在一个D维空间中,球形协方差矩阵,会产生一个D维球面等高线;对角协方差矩阵,会产生一个坐标轴对其的椭球型等高线;全协方差矩阵,会在任意位置产生一个坐标轴对其的椭球型等高线。

当协方差矩阵是球形的或者是对角的,单独的变量之间是独立的

协方差分解

时间不足,具体解释以后再补

下面是协方差分解的原理图

使用Python实现正态分布、正态分布采样


变量的线性变换(正态分布采样原理)

使用Python实现正态分布、正态分布采样


python实现

多元正态分布在python的numpy库中有很方便一个函数

np.random.multivariate_normal(mean=mean,cov=conv,size=N)

这个函数中,mean代表均值,是在每个维度中的均值。cov代表协方差矩阵,就像上面讲的那种形式,协方差矩阵值的大小将决定采样范围的大小。size代表需要采样生成的点数,此时输出大小为(N*D)的坐标矩阵。

另外,其他参数包括:check_valid,这个参数用于决定当cov即协方差矩阵不是半正定矩阵时程序的处理方式,它一共有三个值:warn,raise以及ignore。当使用warn作为传入的参数时,如果cov不是半正定的程序会输出警告但仍旧会得到结果;当使用raise作为传入的参数时,如果cov不是半正定的程序会报错且不会计算出结果;当使用ignore时忽略这个问题即无论cov是否为半正定的都会计算出结果

tol:检查协方差矩阵奇异值时的公差,float类型。

下面是一个小demo

import numpy as np
import matplotlib.pyplot as plt

mean = np.array([2,1])    # 均值
conv = np.array([[0.5,0.0],# 协方差矩阵
     [0.0,0.5]])
axis = np.random.multivariate_normal(mean=mean,size=200)
x,y = np.random.multivariate_normal(mean=mean,size=1000).T

# print(axis[:])

plt.plot(axis[:,0],axis[:,1],'ro')
plt.show()
plt.plot(x,y,'ro')
plt.show()

注意,单独取出每个坐标轴的坐标数组时,需要在最后加上.T,否则会报错 效果展示:

使用Python实现正态分布、正态分布采样


协方差值的大小对采样的影响:

mean = np.array([2,0.5]])

conv2 = np.array([[10,10]])
axis = np.random.multivariate_normal(mean=mean,cov=conv2,size=200).T

# print(axis[:])

plt.plot(axis[:,'ro')
plt.show()

效果如下:

使用Python实现正态分布、正态分布采样


这里没有设定随机种子店,每次随机数会有所不同。

以上这篇使用Python实现正态分布、正态分布采样就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

猜你在找的Python相关文章