笔者之前用R开发评分卡时,需要进行分箱计算woe及iv值,采用的R包是smbinning,它可以自动进行分箱。近期换用python开发, 也想实现自动分箱功能,找到了一个woe包,地址https://pypi.org/project/woe/,可以直接 pip install woe安装。
由于此woe包官网介绍及给的例子不是很好理解,关于每个函数的使用也没有很详细的说明,经过一番仔细探究后以此文记录一下该woe包的使用及其计算原理。
例子
官方给的例子不是很好理解,以下是我写的一个使用示例。以此例来说明各主要函数的使用方法。计算woe的各相关函数主要在feature_process.py中定义。
import woe.feature_process as fp import woe.eval as eval #%% woe分箱,iv and transform data_woe = data #用于存储所有数据的woe值 civ_list = [] n_positive = sum(data['target']) n_negtive = len(data) - n_positive for column in list(data.columns[1:]): if data[column].dtypes == 'object': civ = fp.proc_woe_discrete(data,column,n_positive,n_negtive,0.05*len(data),alpha=0.05) else: civ = fp.proc_woe_continuous(data,alpha=0.05) civ_list.append(civ) data_woe[column] = fp.woe_trans(data[column],civ) civ_df = eval.eval_feature_detail(civ_list,'output_feature_detail_0315.csv') #删除iv值过小的变量 iv_thre = 0.001 iv = civ_df[['var_name','iv']].drop_duplicates() x_columns = iv.var_name[iv.iv > iv_thre]
计算分箱,woe,iv
核心函数主要是freature_process.proc_woe_discrete()与freature_process.proc_woe_continuous(),分别用于计算连续变量与离散变量的woe。它们的输入形式相同:
proc_woe_discrete(df,var,global_bt,global_gt,min_sample,alpha=0.01) proc_woe_continuous(df,alpha=0.01)
输入:
df: DataFrame,要计算woe的数据,必须包含'target'变量,且变量取值为{0,1}
var:要计算woe的变量名
global_bt:全局变量bad total。df的正样本数量
global_gt:全局变量good total。df的负样本数量
min_sample:指定每个bin中最小样本量,一般设为样本总量的5%。
alpha:用于自动计算分箱时的一个标准,默认0.01.如果iv_划分>iv_不划分*(1+alpha)则划分。
输出:一个自定义的InfoValue类的object,包含了分箱的一切结果信息。
该类定义见以下一段代码。
class InfoValue(object): ''' InfoValue Class ''' def __init__(self): self.var_name = [] self.split_list = [] self.iv = 0 self.woe_list = [] self.iv_list = [] self.is_discrete = 0 self.sub_total_sample_num = [] self.positive_sample_num = [] self.negative_sample_num = [] self.sub_total_num_percentage = [] self.positive_rate_in_sub_total = [] self.negative_rate_in_sub_total = [] def init(self,civ): self.var_name = civ.var_name self.split_list = civ.split_list self.iv = civ.iv self.woe_list = civ.woe_list self.iv_list = civ.iv_list self.is_discrete = civ.is_discrete self.sub_total_sample_num = civ.sub_total_sample_num self.positive_sample_num = civ.positive_sample_num self.negative_sample_num = civ.negative_sample_num self.sub_total_num_percentage = civ.sub_total_num_percentage self.positive_rate_in_sub_total = civ.positive_rate_in_sub_total self.negative_rate_in_sub_total = civ.negative_rate_in_sub_total
打印分箱结果
eval.eval_feature_detail(Info_Value_list,out_path=False)
输入:
Info_Value_list:存储各变量分箱结果(proc_woe_continuous/discrete的返回值)的List.
输出:
各变量分箱结果的DataFrame。各列分别包含如下信息:
var_name | 变量名 |
split_list | 划分区间 |
sub_total_sample_num | 该区间总样本数 |
positive_sample_num | 该区间正样本数 |
negative_sample_num | 该区间负样本数 |
sub_total_num_percentage | 该区间总占比 |
positive_rate_in_sub_total | 该区间正样本占总正样本比例 |
woe_list | woe |
iv_list | 该区间iv |
iv |
该变量iv(各区间iv之和) |
woe转换
得到分箱及woe,iv结果后,对原数据进行woe转换,主要用以下函数
woe_trans(dvar,civ): replace the var value with the given woe value
输入:
dvar: 要转换的变量,Series
civ: proc_woe_discrete或proc_woe_discrete输出的分箱woe结果,自定义的InfoValue类
输出:
var: woe转换后的变量,Series
分箱原理
该包中对变量进行分箱的原理类似于二叉决策树,只是决定如何划分的目标函数是iv值。
1)连续变量分箱
首先简要描述分箱主要思想:
1.初始化数据集D =D0为全量数据。转步骤2
2.对于D,将数据按从小到大排序并按数量等分为10份,记录各划分点。计算不进行仍何划分时的iv0,转步骤3.
3.遍历各划分点,计算利用各点进行二分时的iv。
如果最大iv>iv0*(1+alpha)(用户给定,默认0.01): 则进行划分,且最大iv对应的即确定为此次划分点。它将D划分为左右两个结点,数据集分别为DL,DR.转步骤4.
否则:停止。
4.分别令D=DL,D=DR,重复步骤2.
为了便于理解,上面简化了一些条件。实际划分时还设计到一些限制条件,如不满足会进行区间合并。
主要限制条件有以下2个:
b.每个bin的target取值个数>1,即每个bin必须同时包含正负样本。
2)连续变量分箱
对于离散变量分箱后续补充 to be continued...
以上这篇python自动分箱,计算woe,iv的实例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。