Python实现直播推流效果

前端之家收集整理的这篇文章主要介绍了Python实现直播推流效果前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

首先给出展示结果,大体就是检测工业板子是否出现。采取检测的方法比较简单,用的OpenCV的模板检测。

Python实现直播推流效果

大体思路

  • opencv读取视频
  • 将视频分割为帧
  • 对每一帧进行处理(opencv模板匹配)
  • 在将此帧写入pipe管道
  • 利用ffmpeg进行推流直播

中间遇到的问题

在处理本地视频时,并没有延时卡顿的情况。但对实时视频流的时候,出现了卡顿延时的效果。在一顿度娘操作之后,采取了多线程的方法

opencv读取视频

def run_opencv_camera():
 video_stream_path = 0
 # 当video_stream_path = 0 会开启计算机 默认摄像头 也可以为本地视频文件的路径
 cap = cv2.VideoCapture(video_stream_path)

 while cap.isOpened():
 is_opened,frame = cap.read()
 cv2.imshow('frame',frame)
 cv2.waitKey(1)
 cap.release()

OpenCV模板匹配

模板匹配就是在一幅图像中寻找一个特定目标的方法之一,这种方法的原理非常简单,遍历图像中每一个可能的位置,比较各处与模板是否相似,当相似度足够高时,就认为找到了目标。

def template_match(img_rgb):
 # 灰度转换
 img_gray = cv2.cvtColor(img_rgb,cv2.COLOR_BGR2GRAY)
 # 模板匹配
 res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
 # 设置阈值
 threshold = 0.8
 loc = np.where(res >= threshold)
 if len(loc[0]):
 # 这里直接固定区域
 cv2.rectangle(img_rgb,(155,515),(1810,820),(0,255),3)
 cv2.putText(img_rgb,category,(240,600),cv2.FONT_HERSHEY_SIMPLEX,1,255,0),2)
 cv2.putText(img_rgb,Confidence,640),Precision,680),product_yield,720),result,780),2,5)
 return img_rgb

FFmpeg推流

在Ubuntu 14 上安装 Nginx-RTMP 流媒体服务器

https://www.jb51.net/article/175121.htm

import subprocess as sp
rtmpUrl = ""
camera_path = ""
cap = cv.VideoCapture(camera_path)
# Get video information
fps = int(cap.get(cv.CAP_PROP_FPS))
width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
# ffmpeg command
command = ['ffmpeg','-y','-f','rawvideo','-vcodec','-pix_fmt','bgr24','-s',"{}x{}".format(width,height),'-r',str(fps),'-i','-','-c:v','libx264','yuv420p','-preset','ultrafast','flv',rtmpUrl]
# 管道配置
p = sp.Popen(command,stdin=sp.PIPE)
# read webcamera
while(cap.isOpened()):
 ret,frame = cap.read()
 if not ret:
 print("opening camera is Failed")
 break
 # process frame
 # your code
 # process frame
 # write to pipe
 p.stdin.write(frame.tostring())

说明:rtmp是要接受视频的服务器,服务器按照上面所给连接地址即可。

多线程处理

python mutilprocessing多进程编程 https://www.jb51.net/article/134726.htm

def image_put(q):
 # 采取本地视频验证
 cap = cv2.VideoCapture("./new.mp4")
 # 采取视频流的方式
 # cap = cv2.VideoCapture(0)
 # cap.set(cv2.CAP_PROP_FRAME_WIDTH,1920)
 # cap.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)
 if cap.isOpened():
 print('success')
 else:
 print('faild')
 while True:
 q.put(cap.read()[1])
 q.get() if q.qsize() > 1 else time.sleep(0.01)
def image_get(q):
 while True:
 # start = time.time()
 #flag += 1
 frame = q.get()
 frame = template_match(frame)
 # end = time.time()
 # print("the time is",end-start)
 cv2.imshow("frame",frame)
 cv2.waitKey(0)
 # pipe.stdin.write(frame.tostring())
 #cv2.imwrite(save_path + "%d.jpg"%flag,frame)
# 多线程执行一个摄像头
def run_single_camera():
 # 初始化
 mp.set_start_method(method='spawn') # init
 # 队列
 queue = mp.Queue(maxsize=2)
 processes = [mp.Process(target=image_put,args=(queue,)),mp.Process(target=image_get,))]
 [process.start() for process in processes]
 [process.join() for process in processes]
def run():
 run_single_camera() # quick,with 2 threads
 pass

说明:使用Python3自带的多线程模块mutilprocessing模块,创建一个队列,线程A从通过rstp协议从视频流中读取出每一帧,并放入队列中,线程B从队列中将图片取出,处理后进行显示。线程A如果发现队列里有两张图片,即线程B的读取速度跟不上线程A,那么线程A主动将队列里面的旧图片删掉,换新图片

全部代码展示

import time
import multiprocessing as mp
import numpy as np
import random
import subprocess as sp
import cv2
import os
# 定义opencv所需的模板
template_path = "./high_img_template.jpg"
# 定义矩形框所要展示的变量
category = "Category: board"
var_confidence = (np.random.randint(86,98)) / 100
Confidence = "Confidence: " + str(var_confidence)
var_precision = round(random.uniform(98,99),2)
Precision = "Precision: " + str(var_precision) + "%"
product_yield = "Product Yield: 100%"
result = "Result: perfect"
# 读取模板并获取模板的高度和宽度
template = cv2.imread(template_path,0)
h,w = template.shape[:2]
# 定义模板匹配函数
def template_match(img_rgb):
 # 灰度转换
 img_gray = cv2.cvtColor(img_rgb,5)
 return img_rgb
# 视频属性
size = (1920,1080)
sizeStr = str(size[0]) + 'x' + str(size[1])
# fps = cap.get(cv2.CAP_PROP_FPS) # 30p/self
# fps = int(fps)
fps = 11
hz = int(1000.0 / fps)
print ('size:'+ sizeStr + ' fps:' + str(fps) + ' hz:' + str(hz))
rtmpUrl = 'rtmp://localhost/hls/test'
# 直播管道输出
# ffmpeg推送rtmp 重点 : 通过管道 共享数据的方式
command = ['ffmpeg',sizeStr,rtmpUrl]
#管道特性配置
# pipe = sp.Popen(command,stdout = sp.PIPE,bufsize=10**8)
pipe = sp.Popen(command,stdin=sp.PIPE) #,shell=False
# pipe.stdin.write(frame.tostring())
def image_put(q):
 # 采取本地视频验证
 cap = cv2.VideoCapture("./new.mp4")
 # 采取视频流的方式
 # cap = cv2.VideoCapture(0)
 # cap.set(cv2.CAP_PROP_FRAME_WIDTH,1080)
 if cap.isOpened():
 print('success')
 else:
 print('faild')
 while True:
 q.put(cap.read()[1])
 q.get() if q.qsize() > 1 else time.sleep(0.01)
# 采取本地视频的方式保存图片
save_path = "./res_imgs"
if os.path.exists(save_path):
 os.makedir(save_path)
def image_get(q):
 while True:
 # start = time.time()
 #flag += 1
 frame = q.get()
 frame = template_match(frame)
 # end = time.time()
 # print("the time is",with 2 threads
 pass
if __name__ == '__main__':
 run()

总结

以上所述是小编给大家介绍的Python实现直播推流效果,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

猜你在找的Python相关文章