python – 使用观察数据的形状生成随机对数正态分布

前端之家收集整理的这篇文章主要介绍了python – 使用观察数据的形状生成随机对数正态分布前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我正在尝试将一些数据拟合到对数正态分布,并使用优化的参数生成随机对数正态分布.
经过一番搜索,我发现了一些解决方案,但没有人说服:

使用fit函数的solution1:

import  numpy as np
from scipy.stats      import lognorm

mydata = [1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,19,21,23,25,27,28,30,31,36,41,45,48,52,55,60,68,75,86,118,159,207,354]

shape,loc,scale = lognorm.fit(mydata)
rnd_log = lognorm.rvs (shape,loc=loc,scale=scale,size=100)

解决方案2使用来自原始数据的mu和sigma:

import  numpy as np
from scipy.stats      import lognorm

mydata = [1,354]

mu    = np.mean([np.log(i) for i in mydata])
sigma = np.std([np.log(i) for i in mydata])

distr   = lognorm(mu,sigma)
rnd_log = distr.rvs (size=100)

这些解决方案都不合适:

import pylab
pylab.plot(sorted(mydata,reverse=True),'ro')
pylab.plot(sorted(rnd_log,'bx')

我不确定我是否理解使用发行版的方式,或者我是否遗漏了其他内容……

我虽然在这里找到解决方案:Does anyone have example code of using scipy.stats.distributions?
但我无法从我的数据中得到形状…我是否在使用fit函数时遗漏了一些东西?

谢谢

编辑:

这是一个例子,以便更好地理解我的问题:

print 'solution 1:'
means = []
stdes = []
distr   = lognorm(mu,sigma)
for _ in xrange(1000):
    rnd_log = distr.rvs (size=100)
    means.append (np.mean([np.log(i) for i in rnd_log]))
    stdes.append (np.std ([np.log(i) for i in rnd_log]))
print 'observed mean:',mu,'mean simulated mean:',np.mean (means)
print 'observed std :',sigma,'mean simulated std :',np.mean (stdes)

print '\nsolution 2:'
means = []
stdes = []
shape,scale = lognorm.fit(mydata)
for _ in xrange(1000):
    rnd_log = lognorm.rvs (shape,size=100)
    means.append (np.mean([np.log(i) for i in rnd_log]))
    stdes.append (np.std ([np.log(i) for i in rnd_log]))
print 'observed mean:',np.mean (stdes)

结果是:

solution 1:
observed mean: 1.82562655734 mean simulated mean: 1.18929982267
observed std : 1.39003773799 mean simulated std : 0.88985924363

solution 2:
observed mean: 1.82562655734 mean simulated mean: 4.50608084668
observed std : 1.39003773799 mean simulated std : 5.44206119499

而如果我在R中做同样的事情:

mydata <- c(1,354)
meanlog <- mean(log(mydata))
sdlog <- sd(log(mydata))
means <- c()
stdes <- c()
for (i in 1:1000){
  rnd.log <- rlnorm(length(mydata),meanlog,sdlog)
  means <- c(means,mean(log(rnd.log)))
  stdes <- c(stdes,sd(log(rnd.log)))
}

print (paste('observed mean:',mean(means),sep=' '))
print (paste('observed std :',sdlog,mean(stdes),sep=' '))

我得到:

[1] "observed mean: 1.82562655733507 mean simulated mean: 1.82307191072317"
[1] "observed std : 1.39704049131865 mean simulated std : 1.39736545866904"

这更接近,所以我猜我在使用scipy时做错了…

最佳答案
scipy中的对数正态分布参数化与通常的方法略有不同.请参阅scipy.stats.lognorm文档,尤其是“注释”部分.

以下是如何获得您期望的结果(请注意,我们在拟合时将位置保持为0):

In [315]: from scipy import stats

In [316]: x = np.array([1,354])

In [317]: mu,sigma = stats.norm.fit(np.log(x))

In [318]: mu,sigma
Out[318]: (1.8256265573350701,1.3900377379913127)

In [319]: shape,scale = stats.lognorm.fit(x,floc=0)

In [320]: np.log(scale),shape
Out[320]: (1.8256267737298788,1.3900309739954713)

现在您可以生成样本并确认您的期望:

In [321]: dist = stats.lognorm(shape,scale)

In [322]: means,sds = [],[]

In [323]: for i in xrange(1000):
   .....:     sample = dist.rvs(size=100)
   .....:     logsample = np.log(sample)
   .....:     means.append(logsample.mean())
   .....:     sds.append(logsample.std())
   .....:

In [324]: np.mean(means),np.mean(sds)
Out[324]: (1.8231068508345041,1.3816361818739145)

猜你在找的Python相关文章