我正在尝试将一些数据拟合到对数正态分布,并使用优化的参数生成随机对数正态分布.
经过一番搜索,我发现了一些解决方案,但没有人说服:
使用fit函数的solution1:
import numpy as np
from scipy.stats import lognorm
mydata = [1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,19,21,23,25,27,28,30,31,36,41,45,48,52,55,60,68,75,86,118,159,207,354]
shape,loc,scale = lognorm.fit(mydata)
rnd_log = lognorm.rvs (shape,loc=loc,scale=scale,size=100)
或解决方案2使用来自原始数据的mu和sigma:
import numpy as np
from scipy.stats import lognorm
mydata = [1,354]
mu = np.mean([np.log(i) for i in mydata])
sigma = np.std([np.log(i) for i in mydata])
distr = lognorm(mu,sigma)
rnd_log = distr.rvs (size=100)
这些解决方案都不合适:
import pylab
pylab.plot(sorted(mydata,reverse=True),'ro')
pylab.plot(sorted(rnd_log,'bx')
我不确定我是否理解使用发行版的方式,或者我是否遗漏了其他内容……
我虽然在这里找到解决方案:Does anyone have example code of using scipy.stats.distributions?
但我无法从我的数据中得到形状…我是否在使用fit函数时遗漏了一些东西?
谢谢
编辑:
这是一个例子,以便更好地理解我的问题:
print 'solution 1:'
means = []
stdes = []
distr = lognorm(mu,sigma)
for _ in xrange(1000):
rnd_log = distr.rvs (size=100)
means.append (np.mean([np.log(i) for i in rnd_log]))
stdes.append (np.std ([np.log(i) for i in rnd_log]))
print 'observed mean:',mu,'mean simulated mean:',np.mean (means)
print 'observed std :',sigma,'mean simulated std :',np.mean (stdes)
print '\nsolution 2:'
means = []
stdes = []
shape,scale = lognorm.fit(mydata)
for _ in xrange(1000):
rnd_log = lognorm.rvs (shape,size=100)
means.append (np.mean([np.log(i) for i in rnd_log]))
stdes.append (np.std ([np.log(i) for i in rnd_log]))
print 'observed mean:',np.mean (stdes)
结果是:
solution 1:
observed mean: 1.82562655734 mean simulated mean: 1.18929982267
observed std : 1.39003773799 mean simulated std : 0.88985924363
solution 2:
observed mean: 1.82562655734 mean simulated mean: 4.50608084668
observed std : 1.39003773799 mean simulated std : 5.44206119499
而如果我在R中做同样的事情:
mydata <- c(1,354)
meanlog <- mean(log(mydata))
sdlog <- sd(log(mydata))
means <- c()
stdes <- c()
for (i in 1:1000){
rnd.log <- rlnorm(length(mydata),meanlog,sdlog)
means <- c(means,mean(log(rnd.log)))
stdes <- c(stdes,sd(log(rnd.log)))
}
print (paste('observed mean:',mean(means),sep=' '))
print (paste('observed std :',sdlog,mean(stdes),sep=' '))
我得到:
[1] "observed mean: 1.82562655733507 mean simulated mean: 1.82307191072317"
[1] "observed std : 1.39704049131865 mean simulated std : 1.39736545866904"
这更接近,所以我猜我在使用scipy时做错了…
最佳答案
scipy中的对数正态分布参数化与通常的方法略有不同.请参阅
scipy.stats.lognorm
文档,尤其是“注释”部分.
以下是如何获得您期望的结果(请注意,我们在拟合时将位置保持为0):
In [315]: from scipy import stats
In [316]: x = np.array([1,354])
In [317]: mu,sigma = stats.norm.fit(np.log(x))
In [318]: mu,sigma
Out[318]: (1.8256265573350701,1.3900377379913127)
In [319]: shape,scale = stats.lognorm.fit(x,floc=0)
In [320]: np.log(scale),shape
Out[320]: (1.8256267737298788,1.3900309739954713)
现在您可以生成样本并确认您的期望:
In [321]: dist = stats.lognorm(shape,scale)
In [322]: means,sds = [],[]
In [323]: for i in xrange(1000):
.....: sample = dist.rvs(size=100)
.....: logsample = np.log(sample)
.....: means.append(logsample.mean())
.....: sds.append(logsample.std())
.....:
In [324]: np.mean(means),np.mean(sds)
Out[324]: (1.8231068508345041,1.3816361818739145)