基于列表在python numpy中排列数据的最快方法

前端之家收集整理的这篇文章主要介绍了基于列表在python numpy中排列数据的最快方法前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

在numpy中安排数据时遇到问题
示例a有数据范围列表:

numpy.array([1,3,5,4,6])

我有数据:

numpy.array([1,2,6,7,8,9,10,11,12,13,14,15,16,17,18,19])

我需要安排数据

numpy.array([

[1,9999,9999]

[2,9999]

[5,9999]

[10,9999]

[14,19]

])

我认为它与diag /对角线/跟踪功能有点相似.

我通常使用基本的迭代来完成这项工作… numpy有这个功能所以它可以执行得更快吗?

最佳答案
以下是一些排列数据的方法

from numpy import arange,array,ones,r_,zeros
from numpy.random import randint

def gen_tst(m,n):
    a= randint(1,n,m)
    b,c= arange(a.sum()),ones((m,n),dtype= int)* 999
    return a,b,c

def basic_1(a,c):
    # some assumed basic iteration based
    n= 0
    for k in xrange(len(a)):
        m= a[k]
        c[k,:m],n= b[n: n+ m],n+ m

def advanced_1(a,c):
    # based on Svens answer
    cum_a= r_[0,a.cumsum()]
    i= arange(len(a)).repeat(a)
    j= arange(cum_a[-1])- cum_a[:-1].repeat(a)
    c[i,j]= b

def advanced_2(a,c):
    # other loopless version
    c[arange(c.shape[1])+ zeros((len(a),1),dtype= int)< a[:,None]]= b

还有一些时间:

In []: m,n= 10,100
In []: a,c= gen_tst(m,n)
In []: 1.* a.sum()/ (m* n)
Out[]: 0.531
In []: %timeit advanced_1(a,c)
10000 loops,best of 3: 99.2 us per loop
In []: %timeit advanced_2(a,best of 3: 68 us per loop
In []: %timeit basic_1(a,best of 3: 47.1 us per loop

In []: m,n= 50,500
In []: a,n)
In []: 1.* a.sum()/ (m* n)
Out[]: 0.455
In []: %timeit advanced_1(a,c)
1000 loops,best of 3: 1.03 ms per loop
In []: %timeit advanced_2(a,best of 3: 1.06 ms per loop
In []: %timeit basic_1(a,best of 3: 227 us per loop

In []: m,n= 250,2500
In []: a,n)
In []: 1.* a.sum()/ (m* n)
Out[]: 0.486
In []: %timeit advanced_1(a,c)
10 loops,best of 3: 30.4 ms per loop
In []: %timeit advanced_2(a,best of 3: 32.4 ms per loop
In []: %timeit basic_1(a,best of 3: 2 ms per loop

所以基本的迭代似乎非常有效.

更新:
当然,基于迭代的基本实现的性能仍然可以进一步提高.作为一个起点建议;例如考虑这个(基于减少加法的基本迭代):

def basic_2(a,c):
    n= 0
    for k,m in enumerate(a):
        nm= n+ m
        c[k,n= b[n: nm],nm

猜你在找的Python相关文章