python – 转换Tensorflow图形以使用Estimator,使用`sampled_softmax_loss`或`nce_loss`在损失函数中获取’TypeError:数据类型不被理解’

前端之家收集整理的这篇文章主要介绍了python – 转换Tensorflow图形以使用Estimator,使用`sampled_softmax_loss`或`nce_loss`在损失函数中获取’TypeError:数据类型不被理解’前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我试图将Tensorflow的官方基本word2vec实现转换为使用tf.Estimator.
问题是当使用Tensorflow Estimators时,丢失函数(sampled_softmax_loss或nce_loss)会出错.它在原始实现中完美地运行.

这是Tensorflow的官方基本word2vec实现:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py

以下是我实施此代码的Google Colab笔记本,该代码正常运行.

https://colab.research.google.com/drive/1nTX77dRBHmXx6PEF5pmYpkIVxj_TqT5I

这是Google Colab笔记本,我在其中更改了代码,因此它使用Tensorflow Estimator,它不起作用.

https://colab.research.google.com/drive/1IVDqGwMx6BK5-Bgrw190jqHU6tt3ZR3e

为方便起见,这里是我定义model_fn的Estimator版本的精确代码

batch_size = 128
embedding_size = 128  # Dimension of the embedding vector.
skip_window = 1  # How many words to consider left and right.
num_skips = 2  # How many times to reuse an input to generate a label.
num_sampled = 64  # Number of negative examples to sample.

def my_model( features,labels,mode,params):

    with tf.name_scope('inputs'):
        train_inputs = features
        train_labels = labels

    with tf.name_scope('embeddings'):
        embeddings = tf.Variable(
          tf.random_uniform([vocabulary_size,embedding_size],-1.0,1.0))
        embed = tf.nn.embedding_lookup(embeddings,train_inputs)

    with tf.name_scope('weights'):
        nce_weights = tf.Variable(
          tf.truncated_normal(
              [vocabulary_size,stddev=1.0 / math.sqrt(embedding_size)))
    with tf.name_scope('biases'):
        nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

    with tf.name_scope('loss'):
        loss = tf.reduce_mean(
            tf.nn.nce_loss(
                weights=nce_weights,biases=nce_biases,labels=train_labels,inputs=embed,num_sampled=num_sampled,num_classes=vocabulary_size))

    tf.summary.scalar('loss',loss)

    if mode == "train":
        with tf.name_scope('optimizer'):
            optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

        return tf.estimator.EstimatorSpec(mode,loss=loss,train_op=optimizer)

这里是我称之为估算和培训的地方

word2vecEstimator = tf.estimator.Estimator(
        model_fn=my_model,params={
            'batch_size': 16,'embedding_size': 10,'num_inputs': 3,'num_sampled': 128,'batch_size': 16
        })

word2vecEstimator.train(
    input_fn=generate_batch,steps=10)

这是我在调用Estimator培训时得到的错误消息:

INFO:tensorflow:Calling model_fn.
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)

编辑:根据请求,这是input_fn的典型输出

print(generate_batch(batch_size = 8,num_skips = 2,skip_window = 1))

(array([3081,3081,12,6,195,195],dtype=int32),array([[5234],[  12],[   6],[3081],[ 195],[   2]],dtype=int32))
最佳答案
你可以在这里使用generate_batch作为变量:

word2vecEstimator.train(
    input_fn=generate_batch,steps=10)

使用generate_batch()调用函数.
但我认为你必须将一些值传递给函数.

猜你在找的Python相关文章