python – 错误表示加载预训练网络时的扁平尺寸

前端之家收集整理的这篇文章主要介绍了python – 错误表示加载预训练网络时的扁平尺寸前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我正在尝试加载预训练网络,我收到以下错误

F1101 23:03:41.857909 73 net.cpp:757] Cannot copy param 0 weights
from layer ‘fc4’; shape mismatch. Source param shape is 512 4096
(2097152); target param shape is 512 256 4 4 (2097152). To learn this
layer’s parameters from scratch rather than copying from a saved net,
rename the layer.

我注意到512 x 256 x 4 x 4 == 512 x 4096,所以似乎在保存和重新加载网络权重时,图层以某种方式被展平.

我该如何抵消这个错误

重现

我正试图在this GitHub repository中使用D-CNN预训练网络.

我加载网络

import caffe
net = caffe.Net('deploy_D-CNN.prototxt','D-CNN.caffemodel',caffe.TEST)

原型文件

name: "D-CNN"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 259
input_dim: 259
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 64
    kernel_size: 5
    stride: 2
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "norm1"
  top: "conv2"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "fc4"
  type: "Convolution"
  bottom: "conv3"
  top: "fc4"
  convolution_param {
    num_output: 512
    pad: 0
    kernel_size: 4
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "fc4"
  top: "fc4"
}
layer {
  name: "drop4"
  type: "Dropout"
  bottom: "fc4"
  top: "fc4"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer { 
  name: "pool5_spm3"
  type: "Pooling"
  bottom: "fc4"
  top: "pool5_spm3"
  pooling_param {
    pool: MAX
    kernel_size: 10
    stride: 10
  }
}
layer {
  name: "pool5_spm3_flatten"
  type: "Flatten"
  bottom: "pool5_spm3"
  top: "pool5_spm3_flatten"
}
layer { 
  name: "pool5_spm2"
  type: "Pooling"
  bottom: "fc4"
  top: "pool5_spm2"
  pooling_param {
    pool: MAX
    kernel_size: 14
    stride: 14
  }
}
layer {
  name: "pool5_spm2_flatten"
  type: "Flatten"
  bottom: "pool5_spm2"
  top: "pool5_spm2_flatten"
}
layer { 
  name: "pool5_spm1"
  type: "Pooling"
  bottom: "fc4"
  top: "pool5_spm1"
  pooling_param {
    pool: MAX
    kernel_size: 29
    stride: 29
  }
}
layer {
  name: "pool5_spm1_flatten"
  type: "Flatten"
  bottom: "pool5_spm1"
  top: "pool5_spm1_flatten"
}
layer {
  name: "pool5_spm"
  type: "Concat"
  bottom: "pool5_spm1_flatten"
  bottom: "pool5_spm2_flatten"
  bottom: "pool5_spm3_flatten"
  top: "pool5_spm"
  concat_param {
    concat_dim: 1
  }
}


layer {
  name: "fc4_2"
  type: "InnerProduct"
  bottom: "pool5_spm"
  top: "fc4_2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 512
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "fc4_2"
  top: "fc4_2"
}
layer {
  name: "drop4"
  type: "Dropout"
  bottom: "fc4_2"
  top: "fc4_2"
  dropout_param {
    dropout_ratio: 0.5
  }
}

layer {
  name: "fc5"
  type: "InnerProduct"
  bottom: "fc4_2"
  top: "fc5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 19
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prob"
  type: "Softmax"
  bottom: "fc5"
  top: "prob"
}
最佳答案
看起来你正在采用预训练网,其中“fc4”层是一个完全连接的层(又名类型:“InnerProduct”层),它被“重新塑造”成卷积层.
由于内积层和卷积层对输入执行大致相同的线性运算,因此可以在某些假设下进行这种改变(参见例如here).
正如您已经正确识别的那样,原始预训练的完全连接层的权重被保存为“扁平化”,因为形状可以预期卷积层.

我认为这个问题的解决方案可以使用share_mode: PERMISSIVE

layer {
  name: "fc4"
  type: "Convolution"
  bottom: "conv3"
  top: "fc4"
  convolution_param {
    num_output: 512
    pad: 0
    kernel_size: 4
  }
  param {
    lr_mult: 1
    decay_mult: 1
    share_mode: PERMISSIVE  # should help caffe overcome the shape mismatch
  }
  param {
    lr_mult: 2
    decay_mult: 0
    share_mode: PERMISSIVE
  }
}

猜你在找的Python相关文章