我有2个数据帧来比较它们具有相同的列数,并且比较结果应该具有不匹配的字段以及值和ID.
数据帧一
+-----+---+--------+
| name| id| City|
+-----+---+--------+
| Sam| 3| Toronto|
| BALU| 11| YYY|
|CLAIR| 7|Montreal|
|HELEN| 10| London|
|HELEN| 16| Ottawa|
+-----+---+--------+
数据帧二
+-------------+-----------+-------------+
|Expected_name|Expected_id|Expected_City|
+-------------+-----------+-------------+
| SAM| 3| Toronto|
| BALU| 11| YYY|
| CLARE| 7| Montreal|
| HELEN| 10| Londn|
| HELEN| 15| Ottawa|
+-------------+-----------+-------------+
预期产出
+---+------------+--------------+-----+
| ID|Actual_value|Expected_value|Field|
+---+------------+--------------+-----+
| 7| CLAIR| CLARE| name|
| 3| Sam| SAM| name|
| 10| London| Londn| City|
+---+------------+--------------+-----+
码
创建示例数据
from pyspark.sql import sqlContext
from pyspark.context import SparkContext
from pyspark.sql.functions import *
from pyspark.sql.types import StructType,StructField,IntegerType,StringType
from pyspark.sql import SparkSession
sc = SparkContext()
sql_context = sqlContext(sc)
spark = SparkSession.builder.getOrCreate()
spark.sparkContext.setLogLevel("ERROR") # log only on fails
df_Actual = sql_context.createDataFrame(
[("Sam",3,'Toronto'),("BALU",11,'YYY'),("CLAIR",7,'Montreal'),("HELEN",10,'London'),16,'Ottawa')],["name","id","City"]
)
df_Expected = sql_context.createDataFrame(
[("SAM",("CLARE",'Londn'),15,["Expected_name","Expected_id","Expected_City"]
)
为Result创建空数据框
field = [
StructField("ID",StringType(),True),StructField("Actual_value",StructField("Expected_value",StructField("Field",True)
]
schema = StructType(field)
Df_Result = sql_context.createDataFrame(sc.emptyRDD(),schema)
加入预期和实际的id
df_cobined = df_Actual.join(df_Expected,(df_Actual.id == df_Expected.Expected_id))
col_names=df_Actual.schema.names
遍历每列以查找不匹配
for col_name in col_names:
#Filter for column values not matching
df_comp= df_cobined.filter(col(col_name)!=col("Expected_"+col_name ))\
.select(col('id'),col(col_name),col("Expected_"+col_name ))
#Add not matching column name
df_comp = df_comp.withColumn("Field",lit(col_name))
#Add to final result
Df_Result = Df_Result.union(df_comp)
Df_Result.show()
此代码按预期工作.但是,在实际情况中,我有更多列和数百万行进行比较.使用此代码,完成比较需要更多时间.有没有更好的方法来提高性能并获得相同的结果?
最佳答案
避免进行联合的一种方法如下:
原文链接:https://www.f2er.com/python/438911.html>创建要比较的列列表:to_compare
>接下来选择id列并使用pyspark.sql.functions.when比较列.对于那些不匹配的人,使用3个字段构建一个结构数组:to_compare中每列的(Actual_value,Expected_value,Field)
>爆炸临时数组列并删除空值
>最后选择id并使用col.*将结构中的值扩展为列.
码:
StructType用于存储不匹配的字段.
import pyspark.sql.functions as f
# these are the fields you want to compare
to_compare = [c for c in df_Actual.columns if c != "id"]
df_new = df_cobined.select(
"id",f.array([
f.when(
f.col(c) != f.col("Expected_"+c),f.struct(
f.col(c).alias("Actual_value"),f.col("Expected_"+c).alias("Expected_value"),f.lit(c).alias("Field")
)
).alias(c)
for c in to_compare
]).alias("temp")
)\
.select("id",f.explode("temp"))\
.dropna()\
.select("id","col.*")
df_new.show()
#+---+------------+--------------+-----+
#| id|Actual_value|Expected_value|Field|
#+---+------------+--------------+-----+
#| 7| CLAIR| CLARE| name|
#| 10| London| Londn| City|
#| 3| Sam| SAM| name|
#+---+------------+--------------+-----+