Python解聚

前端之家收集整理的这篇文章主要介绍了Python解聚前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我有一个汇总在两个日期之间的数据集,我想通过将总数与这些日期之间的天数相除来每日对其进行解聚.
作为样本

StoreID Date_Start    Date_End     Total_Number_of_sales
78       12/04/2015    17/05/2015    79089
80       12/04/2015    17/05/2015    79089

我想要的数据集是:

StoreID Date         Number_Sales 
78         12/04/2015    79089/38(as there are 38 days in between)
78         13/04/2015    79089/38(as there are 38 days in between) 
78         14/04/2015    79089/38(as there are 38 days in between)
78         ...
78         17/05/2015    79089/38(as there are 38 days in between)

任何帮助都会有用.
谢谢

最佳答案
我不确定这是否正是你想要的,但你可以试试这个(我添加了另一个想象的行):

import datetime as dt
df = pd.DataFrame({'date_start':['12/04/2015','17/05/2015'],'date_end':['18/05/2015','10/06/2015'],'sales':[79089,1000]})

df['date_start'] = pd.to_datetime(df['date_start'],format='%d/%m/%Y')
df['date_end'] = pd.to_datetime(df['date_end'],format='%d/%m/%Y')
df['days_diff'] = (df['date_end'] - df['date_start']).dt.days


master_df = pd.DataFrame(None)
for row in df.index:
    new_df = pd.DataFrame(index=pd.date_range(start=df['date_start'].iloc[row],end = df['date_end'].iloc[row],freq='d'))
    new_df['number_sales'] = df['sales'].iloc[row] / df['days_diff'].iloc[row]
    master_df = pd.concat([master_df,new_df],axis=0)

首先将字符串日期转换为datetime对象(以便您可以计算范围之间的天数),然后根据日期范围创建新索引,并划分销售额.循环将数据帧的每一行粘贴到“扩展”数据帧中,然后将它们连接成一个主数据帧.

原文链接:https://www.f2er.com/python/438906.html

猜你在找的Python相关文章