如何使用python在Image中查找字母

前端之家收集整理的这篇文章主要介绍了如何使用python在Image中查找字母前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我有一个图像,其中包含一些米手写的值,我想找到字母m的位置,所以我可以裁剪它,只留下数字.

这是一个例子:

原始图像:输入图像如下所示,实际上这是我能得到的最好的手写输入,通常情况会更糟.

enter image description here

火车图像:我有一个m字母的列表,从我有的不同手写图像切割.

enter image description here

结果图:我想得到的结果

enter image description here

我已经尝试过使用opencv模板匹配功能,但它不起作用,也发现这个github,但它也使用模板匹配.
我想知道是否还有其他方法可以解决这个问题.

最佳答案
似乎这封信总是在数字的末尾.如果是这样,您可以采用更简单的方法

>找到所有轮廓;

 

>创建边界框列表(即每个轮廓一个框);

 

>确定哪一个是最右边的边界框;

 

>使用所有其他框的(x,y,宽度,高度)信息来创建ROI并仅裁剪数字;

 

Python 2.7和OpenCV 2.4的源代码

import cv2

### load input image and convert it to grayscale
img = cv2.imread("input.png")
print("img shape=",img.shape)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#### extract all contours
_,contours,_  = cv2.findContours(gray.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# debug: draw all contours
#cv2.drawContours(img,-1,(0,255),2)
#cv2.imwrite("all_contours.jpg",img)

#### create one bounding Box for every contour found
bb_list = []
for c in contours:  
    bb = cv2.boundingRect(c)
    # save all Boxes except the one that has the exact dimensions of the image (x,width,height)
    if (bb[0] == 0 and bb[1] == 0 and bb[2] == img.shape[1] and bb[3] == img.shape[0]):
        continue
    bb_list.append(bb)

# debug: draw Boxes
#img_Boxes = img.copy()
#for bb in bb_list:
#   x,w,h = bb
#   cv2.rectangle(img_Boxes,(x,y),(x+w,y+h),2)
#cv2.imwrite("Boxes.jpg",img_Boxes)    

#### sort bounding Boxes by the X value: first item is the left-most Box
bb_list.sort(key=lambda x:x[0])

# debug: draw the last Box of the list (letter M)
#print("letter M @ ",bb_list[-1])
#x,h = bb_list[-1]
#cv2.rectangle(img,2)
#cv2.imwrite("last_contour.jpg",img)

### remove the last item from the list,i.e. remove Box for letter M
bb_list = bb_list[:-1]

### and now the fun part: create one large bounding Box to rule them all
x_start,_,_ = bb_list[0]
x_end,w_end,_ = bb_list[-1]

x = x_start
w = (x_end + w_end) - x_start

bb_list.sort(key=lambda y:y[1]) # sort by Y value: the first item has the smallest Y value 
_,_ = bb_list[0]

bb_list.sort(key=lambda y:y[3]) # sort by Height value: the last item has the largest Height value 
_,h = bb_list[-1]

print("x=",x,"y=","w=","h=",h)

# debug: draw the final region of interest
roi_img = img.copy()
cv2.rectangle(roi_img,2)
cv2.imwrite("roi.jpg",roi_img)

# crop to the roi
crop_img = img[y:y+h,x:x+w]
cv2.imwrite("crop.jpg",crop_img)

猜你在找的Python相关文章