python – 将CountVectorizer和TfidfTransformer稀疏矩阵转换为单独的Pan​​das Dataframe行

前端之家收集整理的这篇文章主要介绍了python – 将CountVectorizer和TfidfTransformer稀疏矩阵转换为单独的Pan​​das Dataframe行前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

问题:将sklearn的CountVectorizer和TfidfTransformer导致的稀疏矩阵转换为Pandas DataFrame列的最佳方法是什么,每个bigram及其相应的频率和tf-idf得分都有一个单独的行?

管道:从sql DB中提取文本数据,将文本拆分为双字节并计算每个文档的频率和每个文档的每个文件的tf-idf,将结果加载回sql DB.

当前状态:

引入两列数据(数字,文本).清理文本以生成第三列cleanText:

   number                               text              cleanText
0     123            The farmer plants grain    farmer plants grain
1     234  The farmer and his son go fishing  farmer son go fishing
2     345            The fisher catches tuna    fisher catches tuna

这个DataFrame被输入到sklearn的特征提取中:

cv = CountVectorizer(token_pattern=r"(?u)\b\w+\b",stop_words=None,ngram_range=(2,2),analyzer='word')
dt_mat = cv.fit_transform(data.cleanText)

tfidf_transformer = TfidfTransformer()
tfidf_mat = tfidf_transformer.fit_transform(dt_mat)

然后在将矩阵转换为数组后将矩阵反馈到原始DataFrame中:

data['frequency'] = list(dt_mat.toarray())
data['tfidf_score']=list(tfidf_mat.toarray())

输出

   number                               text              cleanText  \
0     123            The farmer plants grain    farmer plants grain   
1     234  The farmer and his son go fishing  farmer son go fishing   
2     345            The fisher catches tuna    fisher catches tuna   

               frequency                                        tfidf_score  

0  [0,1,0]  [0.0,0.707106781187,0.0,0.7071067...  
1  [0,1]  [0.0,0.57735026919,...  
2  [1,0]  [0.707106781187,0.0... 

问题:

>功能名称(即双字母组)不在DataFrame中
>频率和tfidf_score不在每个二元组的单独行上

期望的输出

       number                    bigram         frequency      tfidf_score
0     123            farmer plants                 1              0.70  
0     123            plants grain                  1              0.56
1     234            farmer son                    1              0.72
1     234            son go                        1              0.63
1     234            go fishing                    1              0.34
2     345            fisher catches                1              0.43
2     345            catches tuna                  1              0.43

我设法使用以下代码获取分配给DataFrame的单独行的数字列之一:

data.reset_index(inplace=True)
rows = []
_ = data.apply(lambda row: [rows.append([row['number'],nn]) 
                         for nn in row.tfidf_score],axis=1)
df_new = pd.DataFrame(rows,columns=['number','tfidf_score'])

输出

    number  tfidf_score
0      123     0.000000
1      123     0.707107
2      123     0.000000
3      123     0.000000
4      123     0.000000
5      123     0.707107
6      123     0.000000
7      234     0.000000
8      234     0.000000
9      234     0.577350
10     234     0.000000
11     234     0.577350
12     234     0.000000
13     234     0.577350
14     345     0.707107
15     345     0.000000
16     345     0.000000
17     345     0.707107
18     345     0.000000
19     345     0.000000
20     345     0.000000

但是,我不确定如何为两个数字列执行此操作,并且这不会引入bigrams(功能名称)本身.此外,这个方法需要一个数组(这就是我首先将稀疏矩阵转换为数组的原因),如果可能的话,我想避免这种情况,因为性能问题以及我必须剥离无意义的行.

非常感谢任何见解!非常感谢你花时间阅读这个问题 – 我为这个问题道歉.如果我能做些什么来改进问题或澄清我的过程,请告诉我.

最佳答案
可以使用CountVectorizer的get_feature_names()捕获二元组名称.从那里它只是一系列融合和合并操作:

print(data)

   number                               text              cleanText
0     123            The farmer plants grain    farmer plants grain
1     234  The farmer and his son go fishing  farmer son go fishing
2     345            The fisher catches tuna    fisher catches tuna

from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer

cv = CountVectorizer(token_pattern=r"(?u)\b\w+\b",analyzer='word')
dt_mat = cv.fit_transform(data.cleanText)

tfidf_transformer = TfidfTransformer()
tfidf_mat = tfidf_transformer.fit_transform(dt_mat)

在这种情况下,CountVectorizer功能名称是bigrams:

print(cv.get_feature_names())

[u'catches tuna',u'farmer plants',u'farmer son',u'fisher catches',u'go fishing',u'plants grain',u'son go']

CountVectorizer.fit_transform()返回一个稀疏矩阵.我们可以将它转换为密集表示形式,将其包装在DataFrame中,然后将特征名称作为列添加

bigrams = pd.DataFrame(dt_mat.todense(),index=data.index,columns=cv.get_feature_names())
bigrams['number'] = data.number
print(bigrams)

   catches tuna  farmer plants  farmer son  fisher catches  go fishing  \
0             0              1           0               0           0   
1             0              0           1               0           1   
2             1              0           0               1           0   

   plants grain  son go  number  
0             1       0     123  
1             0       1     234  
2             0       0     345  

要从宽格式转换为长格式,请使用melt().
然后将结果限制为bigram匹配(query()在这里很有用):

bigrams_long = (pd.melt(bigrams.reset_index(),id_vars=['index','number'],value_name='bigram_ct')
                 .query('bigram_ct > 0')
                 .sort_values(['index','number']))

    index  number        variable  bigram_ct
3       0     123   farmer plants          1
15      0     123    plants grain          1
7       1     234      farmer son          1
13      1     234      go fishing          1
19      1     234          son go          1
2       2     345    catches tuna          1
11      2     345  fisher catches          1

现在重复tfidf的过程:

tfidf = pd.DataFrame(tfidf_mat.todense(),columns=cv.get_feature_names())
tfidf['number'] = data.number

tfidf_long = pd.melt(tfidf.reset_index(),value_name='tfidf').query('tfidf > 0')

最后,合并bigrams和tfidf:

fulldf = (bigrams_long.merge(tfidf_long,on=['index','number','variable'])
                      .set_index('index'))

       number        variable  bigram_ct     tfidf
index                                             
0         123   farmer plants          1  0.707107
0         123    plants grain          1  0.707107
1         234      farmer son          1  0.577350
1         234      go fishing          1  0.577350
1         234          son go          1  0.577350
2         345    catches tuna          1  0.707107
2         345  fisher catches          1  0.707107

猜你在找的Python相关文章