python – Pandas DataFrame:如何计算组中第一行和最后一行的差异?

前端之家收集整理的这篇文章主要介绍了python – Pandas DataFrame:如何计算组中第一行和最后一行的差异?前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

这是我的pandas DataFrame:

import pandas as pd
import numpy as np

data = {"column1": [338,519,871,1731,2693,2963,3379,3789,3910,4109,4307,4800,4912,5111,5341,5820,6003,...],"column2": [NaN,1,NaN,2,3,NaN],...}

df = pd.DataFrame(data)
df
>>>      column1  column2
0        338      NaN
1        519      1.0
2        871      1.0
3       1731      1.0
4       2693      1.0
5       2963      NaN
6       3379      NaN
7       3789      2.0
8       3910      2.0
9       4109      NaN
10      4307      NaN
11      4800      3.0
12      4912      3.0
13      5111      3.0
14      5341      3.0
15      5820      3.0
16      6003      NaN
17      ....      ....

column2中的整数表示column1中的“groups”,例如:行1-4是组“1”,行7-8是组“2”,行11-15是组“3”等.

我想计算每组中第一行和最后一行之间的差异.结果数据框如下所示:

df
>>>      column1  column2  column3
0        338      NaN      NaN
1        519      1.0      2174
2        871      1.0      2174
3       1731      1.0      2174
4       2693      1.0      2174
5       2963      NaN      NaN
6       3379      NaN      NaN
7       3789      2.0      121
8       3910      2.0      121
9       4109      NaN      NaN
10      4307      NaN      NaN
11      4800      3.0      1020
12      4912      3.0      1020
13      5111      3.0      1020
14      5341      3.0      1020
15      5820      3.0      1020
16      6003      NaN      NaN
17      ....      ....     ...

因为:

2693-519 = 2174
3910-3789 = 121
5820-4800 = 1020

计算column3的“熊猫方式”是什么?不知何故,必须遍历column3,寻找连续的值组,例如df.column2!=“NaN”.

编辑:我意识到我的例子可能会引导读者假设第1列中的值只是增加.实际上,有间隔,列间隔

df = pd.DataFrame(data)
df
>>>    interval      column1  column2
0      interval1     338      NaN
1      interval1     519      1.0
2      interval1     871      1.0
3      interval1     1731      1.0
4      interval1     2693      1.0
5      interval1     2963      NaN
6      interval1     3379      NaN
7      interval1     3789      2.0
8      interval1     3910      2.0
9      interval1     4109      NaN
10     interval1     4307      NaN
11     interval1     4800      3.0
12     interval1     4912      3.0
13     interval1     5111      3.0
14     interval1     5341      3.0
15     interval1     5820      3.0
16     interval1     6003      NaN
17      ....      ....
18     interval2     12        13
19     interval2     115       13
20     interval2     275       NaN
....
最佳答案
您可以先过滤,然后在transform中获得第一个和最后一个值的差异:

df['col3'] = df[df.column2.notnull()]
                  .groupby('column2')['column1']
                  .transform(lambda x: x.iat[-1] - x.iat[0])
print (df)
    column1  column2    col3
0       338      NaN     NaN
1       519      1.0  2174.0
2       871      1.0  2174.0
3      1731      1.0  2174.0
4      2693      1.0  2174.0
5      2963      NaN     NaN
6      3379      NaN     NaN
7      3789      2.0   121.0
8      3910      2.0   121.0
9      4109      NaN     NaN
10     4307      NaN     NaN
11     4800      3.0  1020.0
12     4912      3.0  1020.0
13     5111      3.0  1020.0
14     5341      3.0  1020.0
15     5820      3.0  1020.0
16     6003      NaN     NaN

EDIT1由您的新数据:

df['col3'] = df[df.column2.notnull()]
                  .groupby('column2')['column1']
                  .transform(lambda x: x.iat[-1] - x.iat[0])
print (df)
     interval  column1  column2    col3
0   interval1      338      NaN     NaN
1   interval1      519      1.0  2174.0
2   interval1      871      1.0  2174.0
3   interval1     1731      1.0  2174.0
4   interval1     2693      1.0  2174.0
5   interval1     2963      NaN     NaN
6   interval1     3379      NaN     NaN
7   interval1     3789      2.0   121.0
8   interval1     3910      2.0   121.0
9   interval1     4109      NaN     NaN
10  interval1     4307      NaN     NaN
11  interval1     4800      3.0  1020.0
12  interval1     4912      3.0  1020.0
13  interval1     5111      3.0  1020.0
14  interval1     5341      3.0  1020.0
15  interval1     5820      3.0  1020.0
16  interval1     6003      NaN     NaN
18  interval2       12     13.0   103.0
19  interval2      115     13.0   103.0
20  interval2      275      NaN     NaN

猜你在找的Python相关文章