我有以下代码,我想使用numpy进行优化,最好是删除循环.我看不出如何接近它,所以任何建议都会有所帮助.
indices是一个(N,2)numpy整数数组,N可以是几百万.代码的作用是在第一列中找到重复的索引.对于这些索引,我在第二列中进行了两个相应索引的所有组合.然后我将它们与第一列中的索引一起收集.
index_sets = []
uniques,counts = np.unique(indices[:,0],return_counts=True)
potentials = uniques[counts > 1]
for p in potentials:
correspondents = indices[(indices[:,0] == p),1]
combs = np.vstack(list(combinations(correspondents,2)))
combs = np.hstack((np.tile(p,(combs.shape[0],1)),combs))
index_sets.append(combs)
最佳答案
这是一个在N上向量化的解决方案.注意它仍然包含一个for循环,但它是每个’key-multiplicities组’的循环,这保证是一个小得多的数字(通常是几十个最).
对于N = 1.000.000,运行时间在我的电脑上是一秒的数量级.
import numpy_indexed as npi
N = 1000000
indices = np.random.randint(0,N/10,size=(N,2))
def combinations(x):
"""vectorized computation of combinations for an array of sequences of equal length
Parameters
----------
x : ndarray,[...,n_items]
Returns
-------
ndarray,n_items * (n_items - 1) / 2,2]
"""
return np.rollaxis(x[...,np.triu_indices(x.shape[-1],1)],-2,x.ndim+1)
def process(indices):
"""process a subgroup of indices,all having equal multiplicity
Parameters
----------
indices : ndarray,[n,2]
Returns
-------
ndarray,[m,3]
"""
keys,vals = npi.group_by(indices[:,indices[:,1])
combs = combinations(vals)
keys = np.repeat(keys,combs.shape[1])
return np.concatenate([keys[:,None],combs.reshape(-1,2)],axis=1)
index_groups = npi.group_by(npi.multiplicity(indices[:,0])).split(indices)
result = np.concatenate([process(ind) for ind in index_groups])
免责声明:我是numpy_indexed套餐的作者.