python – 如何给出一个outgroup,为一组物种生成所有可能的Newick Tree排列?

前端之家收集整理的这篇文章主要介绍了python – 如何给出一个outgroup,为一组物种生成所有可能的Newick Tree排列?前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
如果给出一个外群,我如何为一组物种生成所有可能的Newick树排列?

对于那些不知道Newick树格式的人,可以在以下位置找到一个很好的描述:
https://en.wikipedia.org/wiki/Newick_format

我想在给出一个外群的情况下为一组物种创建所有可能的Newick树排列.我期望处理的叶节点的数量很可能是4,5或6个叶节点.

允许“软”和“硬”多面体.
https://en.wikipedia.org/wiki/Polytomy#Soft_polytomies_vs._hard_polytomies
https://biology.stackexchange.com/questions/23667/evidence-discussions-of-hard-polytomy

下面显示的是理想输出,“E”设置为outgroup

理想输出

((("A","B","C"),("D"),("E"));
((("A","D"),("C"),"C",("B"),("E"));
((("B",("A"),"B")("C","C")("B","C")("A",("E"));
(("A",("E"));
(((("A","B"),("E"));

但是,我使用itertools带来的任何可能的解决方案,特别是itertools.permutations,都遇到了等效输出的问题.我想出的最后一个想法涉及下面显示的等效输出.

等效输出

((("C","A"),("E"));
((("C","A",("E"));

这是我的解决方案的开始.但是,除了itertools之外,我现在还不确定该怎么回事.

import itertools

def Newick_Permutation_Generator(list_of_species,name_of_outgroup)
    permutations_list =(list(itertools.permutations(["A","D","E"])))

    for given_permutation in permutations_list:
        process(given_permutation)

Newick_Permutation_Generator(["A","E"],"E")

解决方法

树作为递归套叶

让我们暂时搁置newick表示,并考虑问题的可能python表示.

根树可以被视为(((……组)叶集的递归层次结构.集合是无序的,非常适合描述树中的分支:{{{“A”,“B”},{“C”,“D”}},“E”}应该与{{{ {“C”,“D”},{“B”,“A”}},“E”}.

如果我们考虑叶子的初始集合{“A”,“B”,“C”,“D”,“E”},以“E”作为外群的树是{tree,’形式的集合集. E“}树木取自树木的一组树木,可以从树叶集合{”A“,”B“,”C“,”D“}建造.我们可以尝试编写一个递归树函数生成这组树,我们的总树集将表示如下:

{{tree,"E"} for tree in trees({"A","D"})}

(这里,我使用set comprehension表示法.)

实际上,python不允许集合集,因为集合的元素必须是“可散列的”(也就是说,python必须能够计算对象的一些“散列”值才能检查它们是否属于集).碰巧python集没有这个属性.幸运的是,我们可以使用名为frozenset的类似数据结构,其行为非常类似于集合,但不能修改并且是“可散列的”.因此,我们的树木将是:

all_trees = frozenset(
    {frozenset({tree,"E"}) for tree in trees({"A","D"})})

实现树功能

现在让我们关注树木功能.

对于叶子集的每个可能的分区(分解成一组不相交的子集,包括所有元素),我们需要为分区的每个部分找到所有可能的树(通过递归调用).对于给定的分区,我们将为每个可能的子树组合制作一个树.

例如,如果分区是{“A”,我们将考虑可以从“A”部分制作的所有可能的树(实际上,只是叶子“A” “本身”,以及所有可能由部分{“B”,“D”}(即树木({“B”,“D”}))制成的树木.然后,通过采用所有可能的对来获得该分区的可能树,其中一个元素来自“A”,而另一个元素来自树({“B”,“D”}).

这可以推广到具有两个以上部分的分区,而itertools的产品功能似乎在这里很有用.

因此,我们需要一种方法生成一组叶子的可能分区.

生成集合的分区

这里我创建了一个改编自this solution的partitions_of_set函数

# According to https://stackoverflow.com/a/30134039/1878788:
# The problem is solved recursively:
# If you already have a partition of n-1 elements,how do you use it to partition n elements?
# Either place the n'th element in one of the existing subsets,or add it as a new,singleton subset.
def partitions_of_set(s):
    if len(s) == 1:
        yield frozenset(s)
        return
    # Extract one element from the set
    # https://stackoverflow.com/a/43804050/1878788
    elem,*_ = s
    rest = frozenset(s - {elem})
    for partition in partitions_of_set(rest):
        for subset in partition:
            # Insert the element in the subset
            try:
                augmented_subset = frozenset(subset | frozenset({elem}))
            except TypeError:
                # subset is actually an atomic element
                augmented_subset = frozenset({subset} | frozenset({elem}))
            yield frozenset({augmented_subset}) | (partition - {subset})
        # Case with the element in its own extra subset
        yield frozenset({elem}) | partition

为了检查获得的分区,我们创建了一个函数,使它们更容易显示(这对于稍后对树进行newick表示也很有用):

def print_set(f):
    if type(f) not in (set,frozenset):
        return str(f)
    return "(" + ",".join(sorted(map(print_set,f))) + ")"

我们测试分区是否有效:

for partition in partitions_of_set({"A","D"}):
    print(len(partition),print_set(partition))

输出

1 ((A,B,C,D))
2 ((A,D),C)
2 ((A,C),(B,D))
2 ((B,A)
3 ((B,A,D)
2 ((A,B),(C,D))
3 ((A,C))
2 ((A,B)
3 ((A,C)
3 ((A,D)
3 ((B,D)
3 ((C,B)
4 (A,D)

树的实际代码功能

现在我们可以编写树函数

from itertools import product
def trees(leaves):
    if type(leaves) not in (set,frozenset):
        # It actually is a single leaf
        yield leaves
        # Don't try to yield any more trees
        return
    # Otherwise,we will have to consider all the possible
    # partitions of the set of leaves,and for each partition,# construct the possible trees for each part
    for partition in partitions_of_set(leaves):
        # We need to skip the case where the partition
        # has only one subset (the initial set itself),# otherwise we will try to build an infinite
        # succession of nodes with just one subtree
        if len(partition) == 1:
            part,*_ = partition
            # Just to be sure the assumption is correct
            assert part == leaves
            continue
        # We recursively apply *tree* to each part
        # and obtain the possible trees by making
        # the product of the sets of possible subtrees.
        for subtree in product(*map(trees,partition)):
            # Using a frozenset guarantees
            # that there will be no duplicates
            yield frozenset(subtree)

测试它:

all_trees = frozenset(
    {frozenset({tree,"D"})})

for tree in all_trees:
    print(print_set(tree) + ";")

输出

(((B,E);
((((A,E);
((((B,A),E);
((((C,E);
(((A,E);
((A,D)),E);
(((B,E);
(((C,C)),E);

我希望结果是正确的.

这种做法有点难以实现.我花了一些时间来弄清楚如何避免无限递归(当分区为{{“A”,“D”}}时会发生这种情况).

猜你在找的Python相关文章