在
multilabel classification设置中,
sklearn.metrics.accuracy_score
仅计运算符集精度(3):即,为样本预测的标签集必须与y_true中的相应标签集完全匹配.
这种计算精度的方法有时被命名,可能不那么模糊,精确匹配率(1):
有没有办法让其他典型的方法来计算scikit-learn的准确性,即
(如(1)和(2)中所定义,并且不那么模糊地称为汉明分数(4)(因为它与汉明损失密切相关),或基于标签
准确性)
?
(1)Sorower,Mohammad S.“A literature survey on algorithms for multi-label learning.”俄勒冈州立大学,Corvallis(2010年).
(2)Tsoumakas,Grigorios和Ioannis Katakis. “Multi-label classification: An overview.”信息学系,希腊塞萨洛尼基亚里士多德大学(2006年).
(3)Ghamrawi,Nadia和Andrew McCallum. “Collective multi-label classification.”第14届ACM国际信息与知识管理会议论文集. ACM,2005.
(4)Godbole,Shantanu和Sunita Sarawagi. “Discriminative methods for multi-labeled classification.”知识发现和数据挖掘的进展. Springer Berlin Heidelberg,2004.22-30.
解决方法
您可以自己编写一个版本,这是一个不考虑权重和规范化的示例.
import numpy as np y_true = np.array([[0,1,0],[0,1],[1,1]]) y_pred = np.array([[0,0]]) def hamming_score(y_true,y_pred,normalize=True,sample_weight=None): ''' Compute the Hamming score (a.k.a. label-based accuracy) for the multi-label case https://stackoverflow.com/q/32239577/395857 ''' acc_list = [] for i in range(y_true.shape[0]): set_true = set( np.where(y_true[i])[0] ) set_pred = set( np.where(y_pred[i])[0] ) #print('\nset_true: {0}'.format(set_true)) #print('set_pred: {0}'.format(set_pred)) tmp_a = None if len(set_true) == 0 and len(set_pred) == 0: tmp_a = 1 else: tmp_a = len(set_true.intersection(set_pred))/\ float( len(set_true.union(set_pred)) ) #print('tmp_a: {0}'.format(tmp_a)) acc_list.append(tmp_a) return np.mean(acc_list) if __name__ == "__main__": print('Hamming score: {0}'.format(hamming_score(y_true,y_pred))) # 0.375 (= (0.5+1+0+0)/4) # For comparison sake: import sklearn.metrics # Subset accuracy # 0.25 (= 0+1+0+0 / 4) --> 1 if the prediction for one sample fully matches the gold. 0 otherwise. print('Subset accuracy: {0}'.format(sklearn.metrics.accuracy_score(y_true,sample_weight=None))) # Hamming loss (smaller is better) # $$\text{HammingLoss}(x_i,y_i) = \frac{1}{|D|} \sum_{i=1}^{|D|} \frac{xor(x_i,y_i)}{|L|},$$ # where # - \\(|D|\\) is the number of samples # - \\(|L|\\) is the number of labels # - \\(y_i\\) is the ground truth # - \\(x_i\\) is the prediction. # 0.416666666667 (= (1+0+3+1) / (3*4) ) print('Hamming loss: {0}'.format(sklearn.metrics.hamming_loss(y_true,y_pred)))
输出:
Hamming score: 0.375 Subset accuracy: 0.25 Hamming loss: 0.416666666667