python distutils可以编译CUDA代码吗?

前端之家收集整理的这篇文章主要介绍了python distutils可以编译CUDA代码吗?前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
我有CUDA代码,我想使用distutils为 Python构建一个动态库.但即使安装了“nvcc”编译器,似乎distutils也无法识别“.cu”文件.不知道如何完成它.

解决方法

Distutils默认情况下无法编译CUDA,因为它不支持同时使用多个编译器.默认情况下,它仅根据您的平台设置为编译器,而不是基于您拥有的源代码类型.

我在github上有一个示例项目,其中包含一些针对distutils的猴子补丁,以支持这一点.示例项目是一个C类,它管理一些GPU内存和一个CUDA内核,包含在swig中,并且只使用python setup.py install进行编译.重点是阵列操作,所以我们也使用numpy.对于此示例项目,所有内核都会将数组中的每个元素递增1.

代码在这里:https://github.com/rmcgibbo/npcuda-example.这是setup.py脚本.整个代码的关键是customize_compiler_for_nvcc().

import  os
from os.path import join as pjoin
from setuptools import setup
from distutils.extension import Extension
from distutils.command.build_ext import build_ext
import subprocess
import numpy

def find_in_path(name,path):
    "Find a file in a search path"
    #adapted fom http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/
    for dir in path.split(os.pathsep):
        binpath = pjoin(dir,name)
        if os.path.exists(binpath):
            return os.path.abspath(binpath)
    return None


def locate_cuda():
    """Locate the CUDA environment on the system

    Returns a dict with keys 'home','nvcc','include',and 'lib64'
    and values giving the absolute path to each directory.

    Starts by looking for the CUDAHOME env variable. If not found,everything
    is based on finding 'nvcc' in the PATH.
    """

    # first check if the CUDAHOME env variable is in use
    if 'CUDAHOME' in os.environ:
        home = os.environ['CUDAHOME']
        nvcc = pjoin(home,'bin','nvcc')
    else:
        # otherwise,search the PATH for NVCC
        nvcc = find_in_path('nvcc',os.environ['PATH'])
        if nvcc is None:
            raise EnvironmentError('The nvcc binary could not be '
                'located in your $PATH. Either add it to your path,or set $CUDAHOME')
        home = os.path.dirname(os.path.dirname(nvcc))

    cudaconfig = {'home':home,'nvcc':nvcc,'include': pjoin(home,'include'),'lib64': pjoin(home,'lib64')}
    for k,v in cudaconfig.iteritems():
        if not os.path.exists(v):
            raise EnvironmentError('The CUDA %s path could not be located in %s' % (k,v))

    return cudaconfig
CUDA = locate_cuda()


# Obtain the numpy include directory.  This logic works across numpy versions.
try:
    numpy_include = numpy.get_include()
except AttributeError:
    numpy_include = numpy.get_numpy_include()


ext = Extension('_gpuadder',sources=['src/swig_wrap.cpp','src/manager.cu'],library_dirs=[CUDA['lib64']],libraries=['cudart'],runtime_library_dirs=[CUDA['lib64']],# this Syntax is specific to this build system
                # we're only going to use certain compiler args with nvcc and not with gcc
                # the implementation of this trick is in customize_compiler() below
                extra_compile_args={'gcc': [],'nvcc': ['-arch=sm_20','--ptxas-options=-v','-c','--compiler-options',"'-fPIC'"]},include_dirs = [numpy_include,CUDA['include'],'src'])


# check for swig
if find_in_path('swig',os.environ['PATH']):
    subprocess.check_call('swig -python -c++ -o src/swig_wrap.cpp src/swig.i',shell=True)
else:
    raise EnvironmentError('the swig executable was not found in your PATH')



def customize_compiler_for_nvcc(self):
    """inject deep into distutils to customize how the dispatch
    to gcc/nvcc works.

    If you subclass UnixCCompiler,it's not trivial to get your subclass
    injected in,and still have the right customizations (i.e.
    distutils.sysconfig.customize_compiler) run on it. So instead of going
    the OO route,I have this. Note,it's kindof like a wierd functional
    subclassing going on."""

    # tell the compiler it can processes .cu
    self.src_extensions.append('.cu')

    # save references to the default compiler_so and _comple methods
    default_compiler_so = self.compiler_so
    super = self._compile

    # now redefine the _compile method. This gets executed for each
    # object but distutils doesn't have the ability to change compilers
    # based on source extension: we add it.
    def _compile(obj,src,ext,cc_args,extra_postargs,pp_opts):
        if os.path.splitext(src)[1] == '.cu':
            # use the cuda for .cu files
            self.set_executable('compiler_so',CUDA['nvcc'])
            # use only a subset of the extra_postargs,which are 1-1 translated
            # from the extra_compile_args in the Extension class
            postargs = extra_postargs['nvcc']
        else:
            postargs = extra_postargs['gcc']

        super(obj,postargs,pp_opts)
        # reset the default compiler_so,which we might have changed for cuda
        self.compiler_so = default_compiler_so

    # inject our redefined _compile method into the class
    self._compile = _compile


# run the customize_compiler
class custom_build_ext(build_ext):
    def build_extensions(self):
        customize_compiler_for_nvcc(self.compiler)
        build_ext.build_extensions(self)

setup(name='gpuadder',# random Metadata. there's more you can supploy
      author='Robert McGibbon',version='0.1',# this is necessary so that the swigged python file gets picked up
      py_modules=['gpuadder'],package_dir={'': 'src'},ext_modules = [ext],# inject our custom trigger
      cmdclass={'build_ext': custom_build_ext},# since the package has c code,the egg cannot be zipped
      zip_safe=False)

猜你在找的Python相关文章