PostgreSQL 查询优化--CTE使用

前端之家收集整理的这篇文章主要介绍了PostgreSQL 查询优化--CTE使用前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。


背景1:


当我们需要查询很多客户的,离当前时间最近订单时

参考网址:

http://bonesmoses.org/2014/05/08/trumping-the-postgresql-query-planner/


创建测试表

CREATETABLEtest_order
(
client_idINTNOTNULL,order_dateTIMESTAMPNOTNULL,fillerTEXTNOTNULL
);

插入测试数据

INSERTINTOtest_order
SELECTs1.id,(CURRENT_DATE-INTERVAL'1000days')::DATE
+generate_series(1,s1.id%1000),repeat('',20)
FROMgenerate_series(1,10000)s1(id);
CREATEINDEXidx_test_order_client_id_order_date
ONtest_order(client_id,order_dateDESC);

执行普通sql

不走索引

EXPLAINANALYZE
SELECTclient_id,max(order_date)
FROMtest_order
GROUPBYclient_id;

"Executiontime:5741.682ms"

使用索引

EXPLAIN ANALYZE SELECT DISTINCT ON (client_id) client_id,order_date FROM test_order ORDER BY client_id,order_date DESC;

"Executiontime:4628.510ms"

优化后sql

EXPLAINANALYZE
WITHRECURSIVEskipAS
(
(SELECTclient_id,order_date
FROMtest_order
ORDERBYclient_id,order_dateDESC
LIMIT1)
UNIONALL
(SELECT(SELECTmin(client_id)
FROMtest_order
WHEREclient_id>skip.client_id
)ASclient_id,(SELECTmax(order_date)
FROMtest_order
WHEREclient_id=(
SELECTmin(client_id)
FROMtest_order
WHEREclient_id>skip.client_id
)
)ASorder_date
FROMskip
WHEREskip.client_idISNOTNULL)
)
SELECT*
FROMskip;
"Executiontime:865.889ms"

查询结果

client_id;order_date
1;"2014-03-0900:00:00"
2;"2014-03-1000:00:00"
3;"2014-03-1100:00:00"
4;"2014-03-1200:00:00"
5;"2014-03-1300:00:00"
6;"2014-03-1400:00:00"
7;"2014-03-1500:00:00"
8;"2014-03-1600:00:00"
9;"2014-03-1700:00:00"
10;"2014-03-1800:00:00"
11;"2014-03-1900:00:00"
12;"2014-03-2000:00:00"
13;"2014-03-2100:00:00"
14;"2014-03-2200:00:00"
15;"2014-03-2300:00:00"
16;"2014-03-2400:00:00"
17;"2014-03-2500:00:00"
18;"2014-03-2600:00:00"
19;"2014-03-2700:00:00"
20;"2014-03-2800:00:00"
21;"2014-03-2900:00:00"
22;"2014-03-3000:00:00"
23;"2014-03-3100:00:00"
24;"2014-04-0100:00:00"


背景2:

参考网址:

https://yq.aliyun.com/articles/65202?spm=5176.8091938.0.0.tZZBTS

有一个这样的场景,一张小表A,里面存储了一些ID,大约几百个。

(比如说巡逻车辆ID,环卫车辆的ID,公交车,微公交的ID)。

另外有一张日志表B,每条记录中的ID是来自前面那张小表的,但不是每个ID都出现在这张日志表中,比如说一天可能只有几十个ID会出现在这个日志表的当天的数据中。

(比如车辆的行车轨迹数据,每秒上报轨迹,数据量就非常庞大)。

那么我怎么快速的找出今天没有出现的ID呢。

(哪些巡逻车辆没有出现在这个片区,是不是偷懒了?哪些环卫车辆没有出行,哪些公交或微公交没有出行)?

select id from A where id not in (select id from B where time between ? and ?);

这个QUERY会很慢,有什么优化方法呢。
当然,你还可以让车辆签到的方式来解决这个问题,但是总有未签到的,或者没有这种设计的时候,那么怎么解决呢?


--A
createtablea(idintprimarykey,infotext);
--B
createtableb(idintprimarykey,aidint,crt_timetimestamp);
createindexb_aidonb(aid);

--a表插入1000条
insertintoaselectgenerate_series(1,1000),md5(random()::text);
--b表插入500万条,只包含aid的500个id。
insertintobselectgenerate_series(1,5000000),generate_series(1,500),clock_timestamp();
优化前:

select*fromawhereidnotin(selectaidfromb);

执行时间:大于1min

优化后:

select*fromawhereidnotin(withrecursiveskipas(
(
selectmin(aid)aidfrombwhereaidisnotnull
)
unionall
(
select(selectmin(aid)aidfrombwhereb.aid>s.aidandb.aidisnotnull)
fromskipswheres.aidisnotnull
)--这里的wheres.aidisnotnull一定要加,否则就死循环了.
)
selectaidfromskipwhereaidisnotnull);

执行时间:46msec


情景3:

生成树形结构


参考网址:

http://blog.databasepatterns.com/2014/02/trees-paths-recursive-cte-postgresql.html

createtablesubregions(
idsmallintprimarykey,nametextnotnull,parent_idsmallintnullreferencessubregions(id)
);

insertintosubregionsvalues
(1,'World',null),(2,'Africa',1),(5,'SouthAmerica',419),(9,'Oceania',(11,'WesternAfrica',2),(13,'CentralAmerica',(14,'EasternAfrica',(15,'NorthernAfrica',(17,'MiddleAfrica',(18,'SouthernAfrica',(19,'Americas',(21,'NorthernAmerica',19),(29,'Caribbean',(30,'EasternAsia',142),(34,'SouthernAsia',(35,'South-EasternAsia',(39,'SouthernEurope',150),(53,'AustraliaandNewZealand',9),(54,'Melanesia',(57,'Micronesia',(61,'Polynesia',(142,'Asia',(143,'CentralAsia',(145,'WesternAsia',(150,'Europe',(151,'EasternEurope',(154,'NorthernEurope',(155,'WesternEurope',(419,'LatinAmericaandtheCaribbean',19);
Andyouwantedtomakeaprettytreelikethis:

World
Africa
EasternAfrica
MiddleAfrica
NorthernAfrica
SouthernAfrica
WesternAfrica
Americas
LatinAmericaandtheCaribbean
Caribbean
CentralAmerica
SouthAmerica
NorthernAmerica
Asia
CentralAsia
EasternAsia
South-EasternAsia
SouthernAsia
WesternAsia
Europe
EasternEurope
NorthernEurope
SouthernEurope
WesternEurope
Oceania
AustraliaandNewZealand
Melanesia
Micronesia
Polynesia
Here'showyou'ddoit:
withrecursivemy_expressionas(

--startwiththe"anchor",i.e.allofthenodeswhoseparent_idisnull:
select
id,nameaspath,nameastree,0aslevel
fromsubregions
where
parent_idisnull

unionall

--thentherecursivepart:
select
current.idasid,prevIoUs.path||'>'||current.nameaspath,prevIoUs.level+1)||current.nameastree,prevIoUs.level+1aslevel
fromsubregionscurrent
joinmy_expressionasprevIoUsoncurrent.parent_id=prevIoUs.id
)
select
tree
frommy_expression
orderby
path

路径间加入父节点和分割

select
path
frommy_expression
orderby
path

输出结果:

World
World>Africa
World>Africa>EasternAfrica
World>Africa>MiddleAfrica
World>Africa>NorthernAfrica
World>Africa>SouthernAfrica
World>Africa>WesternAfrica
World>Americas
World>Americas>LatinAmericaandtheCaribbean
World>Americas>LatinAmericaandtheCaribbean>Caribbean
World>Americas>LatinAmericaandtheCaribbean>CentralAmerica
World>Americas>LatinAmericaandtheCaribbean>SouthAmerica
World>Americas>NorthernAmerica
World>Asia
World>Asia>CentralAsia
World>Asia>EasternAsia
World>Asia>South-EasternAsia
World>Asia>SouthernAsia
World>Asia>WesternAsia
World>Europe
World>Europe>EasternEurope
World>Europe>NorthernEurope
World>Europe>SouthernEurope
World>Europe>WesternEurope
World>Oceania
World>Oceania>AustraliaandNewZealand
World>Oceania>Melanesia
World>Oceania>Micronesia
World>Oceania>Polynesia

猜你在找的Postgre SQL相关文章