前端之家收集整理的这篇文章主要介绍了
Postgresql执行计划学习,
前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
Postgresql执行计划:
testdb2=# explain select * from test;
QUERY PLAN
--------------------------------------------------------
Seq Scan on test (cost=0.00..18.50 rows=850 width=68)
(1 row)
Seq scan :表示顺序扫描,即全表扫描;
cost=0.00..18.50: 第一个数字0.00表示启动的成本,也就是返回第一行需要多少cost值;第二行表示所有数据的成本,。
rows=850:表示返回850行。
width=68:表示每行平均宽度为68字节
cost描述一个sql执行的代价是多少,默认情况下,不同的操作其“cost”值如下:
顺序扫描一个数据块, cost 1
随机扫描一个数据块,cost 4
处理一个数据行的cpu,cost 0.01
处理一个索引行的cpu,cost 0.005
每个操作符的cpu代价为 0.0025
testdb2=# explain select a.id,b.id,a.col1,b.col1 from testtab05 a join testtab6 b on a.id = b.id
;
QUERY PLAN
----------------------------------------------------------------------------
Merge Join (cost=176.34..303.67 rows=8064 width=72)
Merge Cond: (a.id = b.id)
-> Sort (cost=88.17..91.35 rows=1270 width=36)
Sort Key: a.id
-> Seq Scan on testtab05 a (cost=0.00..22.70 rows=1270 width=36)
-> Sort (cost=88.17..91.35 rows=1270 width=36)
Sort Key: b.id
-> Seq Scan on testtab6 b (cost=0.00..22.70 rows=1270 width=36)
(8 rows)
testdb2=# explain select a.id,a.name,b.age from t_user a join student b on a.id = b.no;
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=22.82..129.36 rows=2451 width=86)
Hash Cond: (b.no = a.id)
-> Seq Scan on student b (cost=0.00..18.60 rows=860 width=8)
-> Hash (cost=15.70..15.70 rows=570 width=82)
-> Seq Scan on t_user a (cost=0.00..15.70 rows=570 width=82)
(5 rows)
testdb2=# explain analyze select a.id,b.age from t_user a join student b on a.id = b.no;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------
Hash Join (cost=22.82..129.36 rows=2451 width=86) (actual time=0.068..0.071 rows=4 loops=1)
Hash Cond: (b.no = a.id)
-> Seq Scan on student b (cost=0.00..18.60 rows=860 width=8) (actual time=0.042..0.043 rows=6 loops=1)
-> Hash (cost=15.70..15.70 rows=570 width=82) (actual time=0.010..0.010 rows=3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on t_user a (cost=0.00..15.70 rows=570 width=82) (actual time=0.005..0.006 rows=3 loops=1)
Planning time: 0.130 ms
Execution time: 0.234 ms
(8 rows)
testdb2=# explain (analyze true,buffers true) select a.id,b.age from t_user a join student b on a.id = b.no;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------
Hash Join (cost=22.82..129.36 rows=2451 width=86) (actual time=0.019..0.020 rows=4 loops=1)
Hash Cond: (b.no = a.id)
Buffers: shared hit=2
-> Seq Scan on student b (cost=0.00..18.60 rows=860 width=8) (actual time=0.006..0.006 rows=6 loops=1)
Buffers: shared hit=1
-> Hash (cost=15.70..15.70 rows=570 width=82) (actual time=0.006..0.006 rows=3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
Buffers: shared hit=1
-> Seq Scan on t_user a (cost=0.00..15.70 rows=570 width=82) (actual time=0.003..0.004 rows=3 loops=1)
Buffers: shared hit=1
Planning time: 0.064 ms
Execution time: 0.038 ms
(12 rows)
shared hit:表示在共享内存中直接读到的块;
全表扫描:
testdb2=# explain select * from testtab05;
QUERY PLAN
--------------------------------------------------------------
Seq Scan on testtab05 (cost=0.00..22.70 rows=1270 width=36)
(1 row)
索引扫描:
testdb2=# explain select * from jtest01 where id = 11 ;
QUERY PLAN
-----------------------------------------------------------
Seq Scan on jtest01 (cost=0.00..2584.00 rows=1 width=80)
Filter: (id = 11)
(2 rows)
testdb2=# select count(*) from jtest01;
count
--------
100000
(1 row)
testdb2=#
testdb2=# create index idx_jtest01_id on jtest01(id);
CREATE INDEX
testdb2=# explain select * from jtest01 where id = 11 ;
QUERY PLAN
-------------------------------------------------------------------------------
Index Scan using idx_jtest01_id on jtest01 (cost=0.29..8.31 rows=1 width=80)
Index Cond: (id = 11)
(2 rows)
testdb2=#
位图扫描
把满足条件的行货块在内存中建一个位图,扫描完索引后,再根据位图到表的数据文件中把相应的数据读出来。如果走了两个索引,可以把两个索引形成的位图进行 and 或 or 计算,合并成一个位图,再到表的数据文件中读取数据。
当执行计划的结果行数很多时会进行这种扫描,如非等值查询、in子句或有多个条件可走不同的索引时。
以下方式并咩有走位图扫描。
testdb2=# explain select * from jtest01 where id > 50000;
QUERY PLAN
--------------------------------------------------------------------------------------
Index Scan using idx_jtest01_id on jtest01 (cost=0.29..2091.93 rows=49808 width=80)
Index Cond: (id > 50000)
(2 rows)
testdb2=# explain select * from jtest01 where id > 5000;
QUERY PLAN
---------------------------------------------------------------
Seq Scan on jtest01 (cost=0.00..2584.00 rows=94967 width=80)
Filter: (id > 5000)
(2 rows)
testdb2=#
testdb2=# select count(*) from jtest01;
count
--------
100000
(1 row)
testdb2=# explain select count(*) from jtest01;
QUERY PLAN
---------------------------------------------------------------------
Aggregate (cost=2584.00..2584.01 rows=1 width=8)
-> Seq Scan on jtest01 (cost=0.00..2334.00 rows=100000 width=0)
(2 rows)
testdb2=# explain select count(*) from jtest01 where id >4000;
QUERY PLAN
--------------------------------------------------------------------
Aggregate (cost=2823.83..2823.84 rows=1 width=8)
-> Seq Scan on jtest01 (cost=0.00..2584.00 rows=95933 width=0)
Filter: (id > 4000)
(3 rows)
条件过滤:
条件过滤在执行计划中显示为 Filter
如果列上有索引,会走索引,不走过滤
testdb2=# explain select * from jtest01 where id in (select id from jtest02) and jdoc->>'name' like 'a%';
QUERY PLAN
---------------------------------------------------------------------------
Hash Semi Join (cost=4180.00..7425.88 rows=500 width=80)
Hash Cond: (jtest01.id = jtest02.id)
-> Seq Scan on jtest01 (cost=0.00..2834.00 rows=500 width=80)
Filter: ((jdoc ->> 'name'::text) ~~ 'a%'::text)
-> Hash (cost=2539.00..2539.00 rows=100000 width=4)
-> Seq Scan on jtest02 (cost=0.00..2539.00 rows=100000 width=4)
(6 rows)
Nestloop Join(嵌套循环连接)
小表做驱动表,大表做被驱动表,大表上有建索引,连接字段上有建索引。小表数据一般小于10000
Hash Join
优化器使用两个表中较小的表,并利用连接键在内存中建立散列表,然后扫描较大的表并探测散列表,找出与散列表匹配的行。
适用于较小的表可以完全放于内存中的情况,这样总成本就是访问两个表的成本之和。
如果表很大,不能完全放入内存,优化器会将它分割成若干不同的分区,把不能放入内存的部分写入磁盘的临时段,此时要有较大的临时段以便提高io性能。
testdb2=# explain analyze select a.id,b.age from t_user a join student b on a.id = b.no;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------
Hash Join (cost=22.82..129.36 rows=2451 width=86) (actual time=0.068..0.071 rows=4 loops=1)
Hash Cond: (b.no = a.id)
-> Seq Scan on student b (cost=0.00..18.60 rows=860 width=8) (actual time=0.042..0.043 rows=6 loops=1)
-> Hash (cost=15.70..15.70 rows=570 width=82) (actual time=0.010..0.010 rows=3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on t_user a (cost=0.00..15.70 rows=570 width=82) (actual time=0.005..0.006 rows=3 loops=1)
Planning time: 0.130 ms
Execution time: 0.234 ms
(8 rows)
先在较小的表t_user上建立散列表,然后在扫描较大的表 student 并探测散列表,找出与散列表匹配的行。
Merge Join
一般散列连接比合并连接效果好,但如果源数据上有索引,或者结果被排序好,在执行排序合并连接时就不需要排序了,这时合并排序的性能会优于散列连接。
testdb2=# explain select a.id,b.col1 from testtab05 a join testtab6 b on a.id = b.id
;
QUERY PLAN
----------------------------------------------------------------------------
Merge Join (cost=176.34..303.67 rows=8064 width=72)
Merge Cond: (a.id = b.id)
-> Sort (cost=88.17..91.35 rows=1270 width=36)
Sort Key: a.id
-> Seq Scan on testtab05 a (cost=0.00..22.70 rows=1270 width=36)
-> Sort (cost=88.17..91.35 rows=1270 width=36)
Sort Key: b.id
-> Seq Scan on testtab6 b (cost=0.00..22.70 rows=1270 width=36)
(8 rows)
此时id上没有建索引, Sort Key:a.id,Sort key:b.id是对表中id字段进行排序。
建完索引后,则走了hash join
testdb2=# create index idx_id_testtab6 on testtab6(id);
CREATE INDEX
testdb2=# create index idx_id_testtab05 on testtab05(id);
CREATE INDEX
testdb2=# explain select a.id,b.col1 from testtab05 a join testtab6 b on a.id = b.id
testdb2-# ;
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=1.07..2.18 rows=3 width=72)
Hash Cond: (b.id = a.id)
-> Seq Scan on testtab6 b (cost=0.00..1.06 rows=6 width=36)
-> Hash (cost=1.03..1.03 rows=3 width=36)
-> Seq Scan on testtab05 a (cost=0.00..1.03 rows=3 width=36)
(5 rows)
通常情况下,Postsgresql都不会走错的执行计划。Postgresql走错的执行的执行计划是统计信息收集不及时导致的,可通过频繁运行ANALYZE来解决这个问题,使用“ENABLE_”只是一个临时方法。
统计信息的收集
表和索引的行数、块数等统计信息记录再系统表pg_class中,其它的统计信息主要收集在系统表pg_statistic中。
1.统计信息收集器的配置项
2.sql执行的统计信息输出
3.手工收集统计信息
手工收集统计信息的命令是analyze,此命令收集表的统计信息,然后把结果存在系统表pg_statistic里。
postgresql中,autovacuum守护进程是打开的,它自动分析表,并收集统计信息。当autovacuum关闭时,需要周期地,或在表的大部分内容变更后运行ANALYZE命令。
常用的策略:每天在数据库比较空闲的时候运行一次VACUUM和ANALYZE。
testdb2=# VACUUM;
VACUUM
testdb2=# ANALYZE;
ANALYZE
ANALYZE命令格式:
ANALYZE [VERBOSE] [table [(column [,...])]]
VERBOSE:显示处理的进度,及表的一些统计信息
table:要分析的表名,不指定则默认所有的表
column:要分析的特定字段,默认所有的字段。
如:ANALYZE test(id,col1);