PostgreSQL IN运算符具有子查询性能差

前端之家收集整理的这篇文章主要介绍了PostgreSQL IN运算符具有子查询性能差前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
为什么使用子查询时“IN”运算符如此慢?
select * 
from view1 
where id in (1,2,3,4,5,6,7,8,9,10) 
order by somedata;

在9ms内执行。

select * 
from view1 
where id in (select ext_id 
             from aggregate_table 
             order by somedata limit 10) 
order by somedata;

在25000ms中执行,并且似乎在视图(view1)上使用顺序扫描,而不是像第一次查询那样在子查询返回的主键上进行索引扫描。

查询通过somedata limit 10从aggregate_table顺序选择ext_id在0.1ms内执行

所以第二个查询的缓慢是由视图1上的顺序扫描引起的
每个联盟包含三个联盟和约三个联合。第一个UNION包含大约1M行,其他更少。与大约100K行的表连接。这不是很相关,但是,我只是想了解IN操作符的行为。

我想要完成的是使用子查询(一组主键)的结果,并使用它们从复杂视图(view1)中选择数据。

我也不能用

select v1.* 
from view1 v1,aggregate_table at 
where v1.id = at.ext_id 
order by at.somedata 
limit 10

因为我不想用somedata来排序大连接。我只想从主键从视图中选择10个结果,然后只排序这些。

问题是为什么当我使用快速的子查询返回完全相同的键集时,IN操作符执行速度很快,当我明确列出这些键时,这么慢?

根据要求提供EXPLAIN ANALYZE

第一个查询 – select * from view1其中id in(1,10)order by somedata;

Sort  (cost=348.480..348.550 rows=30 width=943) (actual time=14.385..14.399 rows=10 loops=1)
    Sort Key: "india".three
    Sort Method:  quicksort  Memory: 30kB
  ->  Append  (cost=47.650..347.440 rows=30 width=334) (actual time=11.528..14.275 rows=10 loops=1)
        ->  Subquery Scan "*SELECT* 1"  (cost=47.650..172.110 rows=10 width=496) (actual time=11.526..12.301 rows=10 loops=1)
              ->  Nested Loop  (cost=47.650..172.010 rows=10 width=496) (actual time=11.520..12.268 rows=10 loops=1)
                    ->  Hash Join  (cost=47.650..87.710 rows=10 width=371) (actual time=11.054..11.461 rows=10 loops=1)
                            Hash Cond: (hotel.alpha_five = juliet_xray.alpha_five)
                          ->  Bitmap Heap Scan on sierra hotel  (cost=42.890..82.800 rows=10 width=345) (actual time=10.835..11.203 rows=10 loops=1)
                                  Recheck Cond: (four = ANY ('quebec'::integer[]))
                                ->  Bitmap Index Scan on seven  (cost=0.000..42.890 rows=10 width=0) (actual time=0.194..0.194 rows=10 loops=1)
                                        Index Cond: (four = ANY ('quebec'::integer[]))
                          ->  Hash  (cost=4.340..4.340 rows=34 width=30) (actual time=0.184..0.184 rows=34 loops=1)
                                ->  Seq Scan on six juliet_xray  (cost=0.000..4.340 rows=34 width=30) (actual time=0.029..0.124 rows=34 loops=1)
                    ->  Index Scan using charlie on juliet_two zulu  (cost=0.000..8.390 rows=1 width=129) (actual time=0.065..0.067 rows=1 loops=10)
                            Index Cond: (zulu.four = hotel.victor_whiskey)
        ->  Subquery Scan "*SELECT* 2"  (cost=4.760..97.420 rows=10 width=366) (actual time=0.168..0.168 rows=0 loops=1)
              ->  Hash Join  (cost=4.760..97.320 rows=10 width=366) (actual time=0.165..0.165 rows=0 loops=1)
                      Hash Cond: (alpha_xray.alpha_five = juliet_xray2.alpha_five)
                    ->  Nested Loop  (cost=0.000..92.390 rows=10 width=340) (actual time=0.162..0.162 rows=0 loops=1)
                          ->  Seq Scan on lima_echo alpha_xray  (cost=0.000..8.340 rows=10 width=216) (actual time=0.159..0.159 rows=0 loops=1)
                                  Filter: (four = ANY ('quebec'::integer[]))
                          ->  Index Scan using charlie on juliet_two xray  (cost=0.000..8.390 rows=1 width=128) (never executed)
                                  Index Cond: (zulu2.four = alpha_xray.victor_whiskey)
                    ->  Hash  (cost=4.340..4.340 rows=34 width=30) (never executed)
                          ->  Seq Scan on six uniform  (cost=0.000..4.340 rows=34 width=30) (never executed)
        ->  Subquery Scan "*SELECT* 3"  (cost=43.350..77.910 rows=10 width=141) (actual time=1.775..1.775 rows=0 loops=1)
              ->  Hash Join  (cost=43.350..77.810 rows=10 width=141) (actual time=1.771..1.771 rows=0 loops=1)
                      Hash Cond: (golf.alpha_five = juliet_xray3.alpha_five)
                    ->  Bitmap Heap Scan on lima_golf golf  (cost=38.590..72.910 rows=10 width=115) (actual time=0.110..0.110 rows=0 loops=1)
                            Recheck Cond: (four = ANY ('quebec'::integer[]))
                          ->  Bitmap Index Scan on victor_hotel  (cost=0.000..38.590 rows=10 width=0) (actual time=0.105..0.105 rows=0 loops=1)
                                  Index Cond: (four = ANY ('quebec'::integer[]))
                    ->  Hash  (cost=4.340..4.340 rows=34 width=30) (actual time=0.118..0.118 rows=34 loops=1)
                          ->  Seq Scan on six victor_kilo  (cost=0.000..4.340 rows=34 width=30) (actual time=0.007..0.063 rows=34 loops=1)
 Total runtime: 14.728 ms

第二个查询 – select * from view1其中id in(select ext_id from aggregate_table order by somedata limit 10)order by somedata;

Sort  (cost=254515.780..254654.090 rows=55325 width=943) (actual time=24687.475..24687.488 rows=10 loops=1)
    Sort Key: "five".xray_alpha
    Sort Method:  quicksort  Memory: 30kB
  ->  Hash Semi Join  (cost=54300.820..250157.370 rows=55325 width=943) (actual time=11921.783..24687.308 rows=10 loops=1)
          Hash Cond: ("five".lima = "delta_echo".lima)
        ->  Append  (cost=54298.270..235569.720 rows=1106504 width=494) (actual time=3412.453..23091.938 rows=1106503 loops=1)
              ->  Subquery Scan "*SELECT* 1"  (cost=54298.270..234227.250 rows=1100622 width=496) (actual time=3412.450..20234.122 rows=1100622 loops=1)
                    ->  Hash Join  (cost=54298.270..223221.030 rows=1100622 width=496) (actual time=3412.445..17078.021 rows=1100622 loops=1)
                            Hash Cond: (three_victor.xray_hotel = delta_yankee.xray_hotel)
                          ->  Hash Join  (cost=54293.500..180567.160 rows=1100622 width=470) (actual time=3412.251..12108.676 rows=1100622 loops=1)
                                  Hash Cond: (three_victor.tango_three = quebec_seven.lima)
                                ->  Seq Scan on india three_victor  (cost=0.000..104261.220 rows=1100622 width=345) (actual time=0.015..3437.722 rows=1100622 loops=1)
                                ->  Hash  (cost=44613.780..44613.780 rows=774378 width=129) (actual time=3412.031..3412.031 rows=774603 loops=1)
                                      ->  Seq Scan on oscar quebec_seven  (cost=0.000..44613.780 rows=774378 width=129) (actual time=4.142..1964.036 rows=774603 loops=1)
                          ->  Hash  (cost=4.340..4.340 rows=34 width=30) (actual time=0.149..0.149 rows=34 loops=1)
                                ->  Seq Scan on alpha_kilo delta_yankee  (cost=0.000..4.340 rows=34 width=30) (actual time=0.017..0.095 rows=34 loops=1)
              ->  Subquery Scan "*SELECT* 2"  (cost=4.760..884.690 rows=104 width=366) (actual time=7.846..10.161 rows=104 loops=1)
                    ->  Hash Join  (cost=4.760..883.650 rows=104 width=366) (actual time=7.837..9.804 rows=104 loops=1)
                            Hash Cond: (foxtrot.xray_hotel = delta_yankee2.xray_hotel)
                          ->  Nested Loop  (cost=0.000..877.200 rows=104 width=340) (actual time=7.573..9.156 rows=104 loops=1)
                                ->  Seq Scan on four_india foxtrot  (cost=0.000..7.040 rows=104 width=216) (actual time=0.081..0.311 rows=104 loops=1)
                                ->  Index Scan using three_delta on oscar alpha_victor  (cost=0.000..8.350 rows=1 width=128) (actual time=0.077..0.078 rows=1 loops=104)
                                        Index Cond: (quebec_seven2.lima = foxtrot.tango_three)
                          ->  Hash  (cost=4.340..4.340 rows=34 width=30) (actual time=0.216..0.216 rows=34 loops=1)
                                ->  Seq Scan on alpha_kilo quebec_foxtrot  (cost=0.000..4.340 rows=34 width=30) (actual time=0.035..0.153 rows=34 loops=1)
              ->  Subquery Scan "*SELECT* 3"  (cost=4.760..457.770 rows=5778 width=141) (actual time=0.264..58.353 rows=5777 loops=1)
                    ->  Hash Join  (cost=4.760..399.990 rows=5778 width=141) (actual time=0.253..39.062 rows=5777 loops=1)
                            Hash Cond: (four_uniform.xray_hotel = delta_yankee3.xray_hotel)
                          ->  Seq Scan on whiskey four_uniform  (cost=0.000..315.780 rows=5778 width=115) (actual time=0.112..15.759 rows=5778 loops=1)
                          ->  Hash  (cost=4.340..4.340 rows=34 width=30) (actual time=0.117..0.117 rows=34 loops=1)
                                ->  Seq Scan on alpha_kilo golf  (cost=0.000..4.340 rows=34 width=30) (actual time=0.005..0.059 rows=34 loops=1)
        ->  Hash  (cost=2.430..2.430 rows=10 width=4) (actual time=0.303..0.303 rows=10 loops=1)
              ->  Subquery Scan "ANY_subquery"  (cost=0.000..2.430 rows=10 width=4) (actual time=0.092..0.284 rows=10 loops=1)
                    ->  Limit  (cost=0.000..2.330 rows=10 width=68) (actual time=0.089..0.252 rows=10 loops=1)
                          ->  Index Scan using tango_seven on zulu romeo  (cost=0.000..257535.070 rows=1106504 width=68) (actual time=0.087..0.227 rows=10 loops=1)
 Total runtime: 24687.975 ms
似乎我终于找到了一个解决方案:
select * 
  from view1 
  where view1.id = ANY(
                       (select array(select ext_id 
                                     from aggregate_table 
                                     order by somedata limit 10)
                       )::integer[]
                      ) 
  order by view1.somedata;

在阐述@ Dukeling的想法之后:

I suspect where id in (1,10) can be optimised and
where id in (select …) can’t,the reason being that
(1,10) is a constant expression,while the select is
not.

并将它们定位在更快的查询计划中

Recheck Cond: (id = ANY ('{1,10}'::integer[]))
Index Cond: (id = ANY ('{1,10}'::integer[]))

这个功能比问题中的第一个查询更快,大约1.2ms,现在它使用

Recheck Cond: (id = ANY ($1))
Index Cond: (id = ANY ($1))

和计划中的位图扫描。

猜你在找的Postgre SQL相关文章