postgresql – 如何使用递归查询向后循环分层树结构结构

前端之家收集整理的这篇文章主要介绍了postgresql – 如何使用递归查询向后循环分层树结构结构前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
我正在使用Postgresql 9.1查询层次结构树结构数据,其中包含与节点连接的边(或元素).数据实际上是用于流网络,但是我将问题提炼为简单的数据类型.考虑示例树表.每个边缘具有长度和面积属性,用于确定网络中的一些有用的度量.
CREATE TEMP TABLE tree (
  edge text PRIMARY KEY,from_node integer UNIQUE NOT NULL,-- can also act as PK
  to_node integer REFERENCES tree (from_node),mode character varying(5),-- redundant,but illustrative
  length numeric NOT NULL,area numeric NOT NULL,fwd_path text[],-- optional ordered sequence,useful for debugging
  fwd_search_depth integer,fwd_length numeric,rev_path text[],-- optional unordered set,useful for debugging
  rev_search_depth integer,rev_length numeric,rev_area numeric
);
CREATE INDEX ON tree (to_node);
INSERT INTO tree(edge,from_node,to_node,mode,length,area) VALUES
 ('A',1,4,'start',1.1,0.9),('B',2,1.2,1.3),('C',3,5,1.8,2.4),('D',NULL,('E','end',0.9);

下面可以说明,A-E所表示的边缘与节点1-5连接在一起. NULL to_node(Ø)表示结束节点. from_node始终是唯一的,因此它可以作为PK.如果这个网络像drainage basin一样流动,那么从顶部到底部,起始支路边缘是A,B,C,结束流出边缘是E.

documentation for WITH提供了一个很好的例子,说明如何在递归查询中使用搜索图表.所以,要获得“转发”信息,查询从最后开始,向后退回:

WITH RECURSIVE search_graph AS (
  -- Begin at ending nodes
  SELECT E.from_node,1 AS search_depth,E.length,ARRAY[E.edge] AS path -- optional
  FROM tree E WHERE E.to_node IS NULL

  UNION ALL
  -- Accumulate each edge,working backwards (upstream)
  SELECT o.from_node,sg.search_depth + 1,sg.length + o.length,o.edge|| sg.path -- optional
  FROM tree o,search_graph sg
  WHERE o.to_node = sg.from_node
)
UPDATE tree SET
  fwd_path = sg.path,fwd_search_depth = sg.search_depth,fwd_length = sg.length
FROM search_graph AS sg WHERE sg.from_node = tree.from_node;

SELECT edge,fwd_path,fwd_search_depth,fwd_length
FROM tree ORDER BY edge;

 edge | from_node | to_node | fwd_path | fwd_search_depth | fwd_length
------+-----------+---------+----------+------------------+------------
 A    |         1 |       4 | {A,D,E}  |                3 |        3.4
 B    |         2 |       4 | {B,E}  |                3 |        3.5
 C    |         3 |       5 | {C,E}    |                2 |        2.9
 D    |         4 |       5 | {D,E}    |                2 |        2.3
 E    |         5 |         | {E}      |                1 |        1.1

以上是有意义的,适合大型网络.例如,我可以看到边缘B是从末端的3个边,而前向路径是{B,E},从顶端到末端的总长度为3.5.

但是,我无法找出构建反向查询的好办法.也就是说,从每个边缘,累积的“上游”边缘,长度和面积是多少.使用WITH RECURSIVE,我最好的是:

WITH RECURSIVE search_graph AS (
  -- Begin at starting nodes
  SELECT S.from_node,S.to_node,S.length,S.area,ARRAY[S.edge] AS path -- optional
  FROM tree S WHERE from_node IN (
    -- Starting nodes have a from_node without any to_node
    SELECT from_node FROM tree EXCEPT SELECT to_node FROM tree)

  UNION ALL
  -- Accumulate edges,working forwards
  SELECT c.from_node,c.to_node,sg.length + c.length,sg.area + c.area,c.edge || sg.path -- optional
  FROM tree c,search_graph sg
  WHERE c.from_node = sg.to_node
)
UPDATE tree SET
  rev_path = sg.path,rev_search_depth = sg.search_depth,rev_length = sg.length,rev_area = sg.area
FROM search_graph AS sg WHERE sg.from_node = tree.from_node;

SELECT edge,rev_path,rev_search_depth,rev_length,rev_area
FROM tree ORDER BY edge;

 edge | from_node | to_node | rev_path | rev_search_depth | rev_length | rev_area
------+-----------+---------+----------+------------------+------------+----------
 A    |         1 |       4 | {A}      |                1 |        1.1 |      0.9
 B    |         2 |       4 | {B}      |                1 |        1.2 |      1.3
 C    |         3 |       5 | {C}      |                1 |        1.8 |      2.4
 D    |         4 |       5 | {D,A}    |                2 |        2.3 |      2.2
 E    |         5 |         | {E,C}    |                2 |        2.9 |      3.3

我想将聚合构建到递归查询的第二个术语中,因为每个下游边缘连接到1个或多个上游边缘,但是aggregates are not allowed with recursive queries.另外,我知道连接是粗糙的,因为递归结果具有多个连接边缘条件

反向/反向查询的预期结果是:

edge | from_node | to_node |  rev_path   | rev_search_depth | rev_length | rev_area
------+-----------+---------+-------------+------------------+------------+----------
 A    |         1 |       4 | {A}         |                1 |        1.1 |      0.9
 B    |         2 |       4 | {B}         |                1 |        1.2 |      1.3
 C    |         3 |       5 | {C}         |                1 |        1.8 |      2.4
 D    |         4 |       5 | {A,D}     |                3 |        3.5 |      3.5
 E    |         5 |         | {A,E} |                5 |        6.4 |      6.8

如何写这个更新查询

请注意,我最终更关心累积准确的长度和面积总计,路径属性用于调试.在我现实世界的情况下,转发路径最多可达二百,而我预计大型和复杂流域的反向路径将达数万.

更新2:
我重写了原始递归查询,以便所有累加/聚合都在递归部分之外完成.它应该比以前的这个答案更好.
对于类似的问题,来自@a_horse_with_no_name的 answer非常相似.
WITH 
    RECURSIVE search_graph(edge,area,start_node) AS
    (
        SELECT edge,from_node AS "start_node"
        FROM tree
        UNION ALL
        SELECT o.edge,o.from_node,o.to_node,o.length,o.area,p.start_node
        FROM tree o
    JOIN search_graph p ON p.from_node = o.to_node
    )
    SELECT array_agg(edge) AS "edges"
       --,array_agg(from_node) AS "nodes",count(edge) AS "edge_count",sum(length) AS "length_sum",sum(area) AS "area_sum"
    FROM search_graph
    GROUP BY start_node
    ORDER BY start_node
;

结果如预期:

start_node | edges       | edge_count | length_sum |  area_sum
------------+-------------+------------+------------+------------
  1         | {A}         |          1 |        1.1 |       0.9
  2         | {B}         |          1 |        1.2 |       1.3
  3         | {C}         |          1 |        1.8 |       2.4
  4         | {D,A}     |          3 |        3.5 |       3.5
  5         | {E,A} |          5 |        6.4 |       6.8
原文链接:https://www.f2er.com/postgresql/191801.html

猜你在找的Postgre SQL相关文章