解析一个通过添加本地分区索引提高SQL性能的案例

前端之家收集整理的这篇文章主要介绍了解析一个通过添加本地分区索引提高SQL性能的案例前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

sql如下:

代码如下:
Select /*+ parallel(src,8) */ distinct
src.systemname as systemname
,src.databasename as databasename
,src.tablename as tablename
,src.username as username
from

Meta_dbql_table_usage_exp_hst

src
inner

join DR_QRY_LOG_EXP_HST

rl on

src.acctstringdate = rl.acctstringdate
and src.queryid = rl.queryid


And Src.Systemname = Rl.Systemname
and src.acctstringdate > sysdate - 30
And Rl.Acctstringdate > Sysdate - 30
inner join

Meta_dr_qry_log_tgt_all_hst

tgt on
upper(tgt.systemname) = upper('MOZART')
And Upper(tgt.Databasename) = Upper('GDW_TABLES')
And Upper(tgt.Tablename) = Upper('SSA_SLNG_LSTG_MTRC_SD')

AND src.acctstringdate = tgt.acctstringdate
and rl.statement_id = tgt.statement_id


and rl.systemname = tgt.systemname
And Tgt.Acctstringdate > Sysdate - 30
And Not(
Upper(Tgt.Systemname)=Upper(src.systemname)
And
Upper(Tgt.Databasename) = Upper(Src.Databasename)
And
Upper(Tgt.Tablename) = Upper(Src.Tablename)
)
And tgt.Systemname is not null
And tgt.Databasename Is Not Null
And tgt.tablename is not null

sql的简单分析

总得来看,这个sql就是三个表(Meta_dbql_table_usage_exp_hst,DR_QRY_LOG_EXP_HST,Meta_dr_qry_log_tgt_all_hst)的INNER JOIN,这三个表数据量都在百万级别,且都是分区表(以acctstringdate为分区键),执行计划如下:
代码如下:
------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |
------------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 159 | 8654 | | |
| 1 | PX COORDINATOR | | | | | | |
| 2 | PX SEND QC (RANDOM) | :TQ10002 | 1 | 159 | 8654 | | |
| 3 | SORT UNIQUE | | 1 | 159 | 8654 | | |
| 4 | PX RECEIVE | | 1 | 36 | 3 | | |
| 5 | PX SEND HASH | :TQ10001 | 1 | 36 | 3 | | |
|* 6 | TABLE ACCESS BY LOCAL INDEX ROWID| DR_QRY_LOG_EXP_HST | 1 | 36 | 3 | | |
| 7 | NESTED LOOPS | | 1 | 159 | 8633 | | |
| 8 | NESTED LOOPS | | 8959 | 1076K| 4900 | | |
| 9 | BUFFER SORT | | | | | | |
| 10 | PX RECEIVE | | | | | | |
| 11 | PX SEND BROADCAST | :TQ10000 | | | | | |
| 12 | PARTITION RANGE ITERATOR | | 1 | 56 | 4746 | KEY | 14 |
|* 13 | TABLE ACCESS FULL | Meta_DR_QRY_LOG_TGT_ALL_HST | 1 | 56 | 4746 | KEY | 14 |
| 14 | PX BLOCK ITERATOR | | 8959 | 586K| 154 | KEY | KEY |
|* 15 | TABLE ACCESS FULL | Meta_DBQL_TABLE_USAGE_EXP_HST | 8959 | 586K| 154 | KEY | KEY |
| 16 | PARTITION RANGE ITERATOR | | 1 | | 2 | KEY | KEY |
|* 17 | INDEX RANGE SCAN | DR_QRY_LOG_EXP_HST_IDX | 1 | | 2 | KEY | KEY |
------------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
6 - filter("RL"."STATEMENT_ID"="TGT"."STATEMENT_ID" AND "RL"."SYSTEMNAME"="TGT"."SYSTEMNAME" AND "SRC"."SYSTEMNAME"="RL"."SYSTEMNAME")
13 - filter(UPPER("TGT"."SYSTEMNAME")='MOZART' AND UPPER("TGT"."DATABASENAME")='GDW_TABLES' AND
UPPER("TGT"."TABLENAME")='SSA_SLNG_LSTG_MTRC_SD' AND "TGT"."ACCTSTRINGDATE">SYSDATE@!-30 AND "TGT"."SYSTEMNAME" IS NOT NULL
"TGT"."DATABASENAME" IS NOT NULL AND "TGT"."TABLENAME" IS NOT NULL)
15 - filter("SRC"."ACCTSTRINGDATE"="TGT"."ACCTSTRINGDATE" AND (UPPER("TGT"."SYSTEMNAME")<>UPPER("SRC"."SYSTEMNAME") OR
UPPER("TGT"."DATABASENAME")<>UPPER("SRC"."DATABASENAME") OR UPPER("TGT"."TABLENAME")<>UPPER("SRC"."TABLENAME")) AND
"SRC"."ACCTSTRINGDATE">SYSDATE@!-30)
17 - access("SRC"."QUERYID"="RL"."QUERYID" AND "SRC"."ACCTSTRINGDATE"="RL"."ACCTSTRINGDATE")
filter("RL"."ACCTSTRINGDATE">SYSDATE@!-30)

定位问题

从上面执行计划中的表连接方式可以知道,这三个表之间进行了两次NESTED LOOP,问题出现在最里层的NESTED LOOP(对两个表都做了TABLE FULL SCAN),因为表都是百万级别的(即时过滤后的数据量也不小),性能问题就出现在内表(即被驱动表)Meta_DBQL_TABLE_USAGE_EXP_HST做了太多次的全表扫描。如果能把全表扫描转换成索引,则性能可以大幅度提高。

嵌套连接把要处理的数据集分为外部循环(驱动数据源)和内部循环(被驱动数据源),外部循环只执行一次,内部循环执行的次数等于外部循环执行返回的数据个数。
这种连接的好处是内存使用非常少。
如果驱动数据源有限,且被驱动表在连接列上有相应的索引,则这种连接方式才是高效的。


下面是这三个表上索引的情况:

代码如下:
sql> select index_name,table_name from user_indexes where table_name in ('DR_QRY_LOG_EXP_HST',upper('Meta_dbql_table_usage_exp_hst'),upper('Meta_dr_qry_log_tgt_all_hs
INDEX_NAME TABLE_NAME
------------------------------------------------------------ ------------------------------------------------------------
Meta_DR_QRY_LOG_TGT_ALL_IDX Meta_DR_QRY_LOG_TGT_ALL_HST
Meta_DBQL_TUSAGE_EHST_IDX Meta_DBQL_TABLE_USAGE_EXP_HST
DR_QRY_LOG_EXP_HST_IDX DR_QRY_LOG_EXP_HST
CREATE INDEX "GV"."Meta_DR_QRY_LOG_TGT_ALL_IDX" ON "GV"."Meta_DR_QRY_LOG_TGT_ALL_HST" ("STATEMENT_ID","ACCTSTRINGDATE")
CREATE INDEX "GV"."Meta_DBQL_TUSAGE_EHST_IDX" ON "GV"."Meta_DBQL_TABLE_USAGE_EXP_HST" ("QUERYID","ACCTSTRINGDATE")
CREATE INDEX "GV"."DR_QRY_LOG_EXP_HST_IDX" ON "GV"."DR_QRY_LOG_EXP_HST" ("QUERYID","ACCTSTRINGDATE")

这三个索引都是本地分区索引(都包含分区键acctstringdate),很显然,DR_QRY_LOG_EXP_HST表少了个索引,因为它与表Meta_dr_qry_log_tgt_all_hst 在statement_id上做join,因此应该在它的statement_id上也创建本地分区索引如下:
代码如下:
create index DR_QRY_LOG_EXP_HST_IDX2 on gv.DR_QRY_LOG_EXP_HST (statement_id,ACCTSTRINGDATE) local;

性能对比

新的执行计划如下:
代码如下:
------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |
------------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 159 | 4838 | | |
| 1 | SORT UNIQUE | | 1 | 159 | 4838 | | |
|* 2 | TABLE ACCESS BY LOCAL INDEX ROWID | Meta_DBQL_TABLE_USAGE_EXP_HST | 1 | 67 | 3 | | |
| 3 | NESTED LOOPS | | 1 | 159 | 4816 | | |
| 4 | NESTED LOOPS | | 18 | 1656 | 4762 | | |
| 5 | PARTITION RANGE ITERATOR | | 1 | 56 | 4746 | KEY | 14 |
|* 6 | TABLE ACCESS FULL | Meta_DR_QRY_LOG_TGT_ALL_HST | 1 | 56 | 4746 | KEY | 14 |
| 7 | PARTITION RANGE ITERATOR | | 18 | 648 | 16 | KEY | 14 |
|* 8 | TABLE ACCESS BY LOCAL INDEX ROWID| DR_QRY_LOG_EXP_HST | 18 | 648 | 16 | KEY | 14 |
|* 9 |

INDEX RANGE SCAN | DR_QRY_LOG_EXP_HST_IDX2

| 31 | | 15 | KEY | 14 |
| 10 | PARTITION RANGE ITERATOR | | 1 | | 2 | KEY | KEY |
|* 11 | INDEX RANGE SCAN | Meta_DBQL_TUSAGE_EHST_IDX | 1 | | 2 | KEY | KEY |
------------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - filter((UPPER("TGT"."SYSTEMNAME")<>UPPER("SRC"."SYSTEMNAME") OR
UPPER("TGT"."DATABASENAME")<>UPPER("SRC"."DATABASENAME") OR UPPER("TGT"."TABLENAME")<>UPPER("SRC"."TABLENAME"))
AND "SRC"."SYSTEMNAME"="RL"."SYSTEMNAME")
6 - filter(UPPER("TGT"."SYSTEMNAME")='MOZART' AND UPPER("TGT"."DATABASENAME")='GDW_TABLES' AND
UPPER("TGT"."TABLENAME")='SSA_SLNG_LSTG_MTRC_SD' AND "TGT"."ACCTSTRINGDATE">SYSDATE@!-30 AND "TGT"."SYSTEMNAME"
IS NOT NULL AND "TGT"."DATABASENAME" IS NOT NULL AND "TGT"."TABLENAME" IS NOT NULL)
8 - filter("RL"."SYSTEMNAME"="TGT"."SYSTEMNAME")
9 - access("RL"."STATEMENT_ID"="TGT"."STATEMENT_ID" AND "RL"."ACCTSTRINGDATE">SYSDATE@!-30 AND
"RL"."ACCTSTRINGDATE" IS NOT NULL)
11 - access("SRC"."QUERYID"="RL"."QUERYID" AND "SRC"."ACCTSTRINGDATE"="RL"."ACCTSTRINGDATE")
filter("SRC"."ACCTSTRINGDATE"="TGT"."ACCTSTRINGDATE" AND "SRC"."ACCTSTRINGDATE">SYSDATE@!-30)

从新的的执行计划可以看出,它的第一个NESTED LOOP果然用了最新创建的索引。

下面是执行时间:

代码如下:
已用时间: 00: 00: 02.16

两秒种搞定,远远超出他期望的5s :)

方法总结

NESTED LOOP高效的条件:

驱动数据源有限,且被驱动表在连接列上有相应的索引。

猜你在找的Oracle相关文章