最通俗易懂的 HashMap 源码分析解读

前端之家收集整理的这篇文章主要介绍了最通俗易懂的 HashMap 源码分析解读前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

HashMap 作为最常用的集合类之一,有必要深入浅出的了解一下。这篇文章会深入到 HashMap 源码,刨析它的存储结构以及工作机制。

1. HashMap 的存储结构

HashMap 的数据存储结构是一个 Node<K,V> 数组,在(Java 7 中是 Entry<K,V> 数组,但结构相同)

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>,Cloneable,Serializable {
    // 数组
    transient Node<K,V>[] table;    
	static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        // 链表
        Node<K,V> next;
        ....
	}
	.....
}

存储结构主要是@H_502_11@@H_502_11@数组加链表,像下面的图。

HashMap 存储结构(图片来自网络)

2. HashMap 的 put()

在 Java 8 中 HashMap 的 put 方法如下,我已经详细注释了重要代码

public V put(K key,V value) {
    return putVal(hash(key),key,value,false,true);
}
// 计算哈希值 与(&)、非(~)、或(|)、异或(^)
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash,K key,V value,boolean onlyIfAbsent,boolean evict) {
   
    Node<K,V>[] tab; Node<K,V> p; int n,i;
    // 如果数组为空,进行 resize() 初始化
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 如果计算的位置上Node不存在,直接创建节点插入
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash,null);
    else {
        // 如果计算的位置上Node 存在,链表处理
        Node<K,V> e; K k;
        // 如果 hash 值,k 值完全相同,直接覆盖
        if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 如果 index 位置元素已经存在,且是红黑树
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this,tab,hash,value);
        else {
            // 如果这次要放入的值不存在
            for (int binCount = 0; ; ++binCount) {
                // 尾插法
                if ((e = p.next) == null) {
                    // 找到节点链表中next为空的节点,创建新的节点插入
                    p.next = newNode(hash,null);
                    // 如果节点链表中数量超过TREEIFY_THRESHOLD(8)个,转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab,hash);
                    break;
                }
                // 如果节点链表中有发现已有相同key
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        // 如果节点 e 有值,放入数组 table[]
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
 
    ++modCount;
    // 当前大小大于临界大小,扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

举个例子,如果 put 的 key 为字母 a,当前 HashMap 容量是初始容量 16,计算出位置是 1。

# int hash = key.hashCode()
# hash = hash ^ (hash >>> 16)
# 公式 index = (n - 1) & hash // n 是容量
    
hash HEX(97)  = 0110 0001‬
n-1  HEX(15)  = 0000 1111
--------------------------
         结果  = 0000 0001
# 计算得到位置是 1

总结 HashMap put 过程。

  1. 计算 key 的 hash 值。

    计算方式是 (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);

  2. 检查当前数组是否为空,为空需要进行初始化,初始化容量是 @H_502_11@16 ,负载因子默认 @H_502_11@0.75。

  3. 计算 key 在数组中的坐标。

    计算方式:(容量 - 1) & hash.

    因为容量总是2的次方,所以-1的值的二进制@H_502_11@总是全1。方便与 hash 值进行@H_502_11@与运算。

  4. 如果计算出的坐标元素为空,创建节点加入,put 结束。

    1. 如果当前数组容量大于负载因子设置的容量,@H_502_11@进行扩容。
  5. 如果计算出的坐标元素有值。

    1. 如果坐标上的元素值和要加入的值 key 完全一样,覆盖原有值。

    2. 如果坐标上的元素是@H_502_11@红黑树,把要加入的值和 key 加入到红黑树。

    3. 如果坐标上的元素和要加入的元素不同(@H_502_11@尾插法增加)。

      1. 如果 next 节点为空,把要加入的值和 key 加入 next 节点。

      2. 如果 next 节点不为空,循环查看 next 节点。

        如果发现有 next 节点的 key 和要加入的 key 一样,对应的值替换为新值。

      3. 如果循环 next 节点查找@H_502_11@超过8层还不为空,把这个位置元素转换为@H_502_11@红黑树。

3. HashMap 的 get()

在 Java 8 中 get 方法源码如下,我已经做了注释说明。

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key),key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash,Object key) {
    Node<K,V> first,e; int n; K k;
    // 只有在存储数组已经存在的情况下进入这个 if
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // first 是获取的坐标上元素
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            // key 相同,说明first是想要的元素,返回
            return first;
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                // 如果是红黑树,从红黑树中查找结果
                return ((TreeNode<K,V>)first).getTreeNode(hash,key);
            do {
                // 循环遍历查找
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
 }

get 方法流程总结。

  1. 计算 key 的 hash 值。
  2. 如果存储数组不为空,且计算得到的位置上的元素不为空。继续,否则,返回 Null。
  3. 如果获取到的元素的 key 值相等,说明查找到了,返回元素。
  4. 如果获取到的元素的 key 值不相等,查找 next 节点的元素。
    1. 如果元素是红黑树,在红黑树中查找。
    2. 不是红黑树,遍历 next 节点查找,找到则返回。

4. HashMap 的 Hash 规则

  1. 计算 hash 值 int hash = key.hashCode()。
  2. @H_502_11@与或上 hash 值无符号右移16 位。 hash = hash ^ (hash >>> 16)。
  3. 位置计算公式 index = (n - 1) & hash ,其中 n 是容量。

这里可能会有同学对 hash ^ (hash >>> 16) 有疑惑,很好奇为什么这里要拿 hash 值异或上 hash 值无符号右移 16 位呢?下面通过一个例子演示其中道理所在。

假设 hash 值是 0001 0100 1100 0010 0110 0001‬ 0010 0000,当前容量是 16。

hash        = 0001 0100 1100 0010 0110 0001‬ 0010 0000  ---
                                                         | 与或计算
hash >>> 16 = 0000 0000 0000 0000 0001 0100 1100 0010  ---
------------------------------------------------------ 
hash 结果    = 0001 0100 1100 0010 0111 0101 1110 0100 ---
                                                         | & 与运算
容量 -1      = 0000 0000 0000 0000 0000 0000 0000 1111 ---
------------------------------------------------------
# 得到位置    = 0000 0000 0000 0000 0000 0000 0000 0100 得到位置是 4

如果又新增一个数据,得到 hash 值是 0100 0000 1110 0010 1010 0010‬ 0001 0000 ,容量还是16,计算他的位置应该是什么呢?

hash        = 0100 0000 1110 0010 1010 0010‬ 0001 0000  ---
                                                         | 与或计算
hash >>> 16 = 0000 0000 0000 0000 0001 0100 1100 0010  ---
------------------------------------------------------ 
hash 结果    = 0100 0000 1110 0010 1011 0110 1101 0010 ---
                                                         | & 与运算
容量 -1      = 0000 0000 0000 0000 0000 0000 0000 1111 ---
------------------------------------------------------
# 得到位置    = 0000 0000 0000 0000 0000 0000 0000 0010 得到位置是 2

上面两个例子,得到位置一个是 4,一个是 2,上面只是我随便输入的两个二进制数,那么这两个数如果不经过 hash ^ (hash >>> 16) 运算,位置会有什么变化呢?

hash        = 0001 0100 1100 0010 0110 0001‬ 0010 0000
容量 -1      = 0000 0000 0000 0000 0000 0000 0000 1111
------------------------------------------------------
        结果 = 0000 0000 0000 0000 0000 0000 0000 0000
# 得到位置是 0 
hash        = 0100 0000 1110 0010 1010 0010‬ 0001 0000
容量 -1      = 0000 0000 0000 0000 0000 0000 0000 1111
------------------------------------------------------
        结果 = 0000 0000 0000 0000 0000 0000 0000 0000
# 得到位置是 0 

可以发现位置都是 0 ,冲突概率提高了。可见 hash ^ (hash >>> 16) 让数据的 hash 值的高 16 位与低 16 位进行与或混合,可以减少低位相同时数据插入冲突的概率。

5. HashMap 的初始化大小

  1. 初始化大小是 16,为什么是 16 呢?

    这可能是因为每次扩容都是 2 倍。而选择 2 的次方值 16 作为初始容量,有利于扩容时重新 Hash 计算位置。为什么是 16 我想是一个经验值,理论上说只要是 2 的次方都没有问题。

6. HashMap 的扩容方式

负载因子是多少?负载因子是 @H_502_11@0.75。

扩容方式是什么?看源码说明。

  /**
     * Initializes or doubles table size.  If null,allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise,because we are using power-of-two expansion,the
     * elements from each bin must either stay at same index,or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        // 现有容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 现有扩容阀值
        int oldThr = threshold;
        int newCap,newThr = 0;
        if (oldCap > 0) {
            // 如果当前长度已经大于最大容量。结束扩容
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 如果扩大两倍之后小于最大容量,且现有容量大于等于初始容量,就扩大两倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
               // 扩容阀值扩大为两倍
                newThr = oldThr << 1; // double threshold
        }
        // 当前容量 = 0 ,但是当前记录容量 > 0 ,获取当前记录容量。
       else if (oldThr > 0) // initial capacity was placed in threshold
            // 进入这里,说明是通过指定容量和负载因子的构造函数
            newCap = oldThr;
        else {    	           // zero initial threshold signifies using defaults
            // 进入这里说明是通过无参构造
            // 新的容量
            newCap = DEFAULT_INITIAL_CAPACITY;
            // 新的阀值
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            // 计算扩容阀值
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 如果 oldTab != null,说明是扩容,否则是初始化,直接返回
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 如果当前元素 next节点没有元素,当前元素重新计算位置直接放入
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        // 如果当前节点是红黑树
                        ((TreeNode<K,V>)e).split(this,newTab,j,oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null,loTail = null;
                        Node<K,V> hiHead = null,hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            // == 0 ,位置不变
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            // e.hash & oldCap != 0,位置变为:位置+扩容前容量
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

扩容时候怎么重新确定元素在数组中的位置,我们看到是由 if ((e.hash & oldCap) == 0) 确定的。

hash HEX(97)  = 0110 0001‬
n    HEX(16)  = 0001 0000
--------------------------
         结果  = 0000 0000
# e.hash & oldCap = 0 计算得到位置还是扩容前位置
    
hash HEX(17)  = 0001 0001‬
n    HEX(16)  = 0001 0000
--------------------------
         结果  = 0001 0000
#  e.hash & oldCap != 0 计算得到位置是扩容前位置+扩容前容量

通过上面的分析也可以看出,只有在每次容量都是2的次方的情况下才能使用 if ((e.hash & oldCap) == 0) 判断扩容后的位置。

7. HashMap 中的红黑树

HashMap 在 Java 8 中的实现增加了红黑树,当链表节点达到 8 个的时候,会把链表转换成红黑树,低于 6 个的时候,会退回链表。究其原因是因为当节点过多时,使用红黑树可以更高效的查找到节点。毕竟红黑树是一种二叉查找树。

  1. 节点个数是多少的时候,链表会转变成红黑树。

    链表节点个数@H_502_11@大于等于 8 时,链表会转换成树结构。

  2. 节点个数是多少的时候,红黑树会退回链表。

    节点个数@H_502_11@小于等于 6 时,树会转变成链表。

  3. 为什么转变条件 8 和 6 有一个差值。

    如果没有差值,都是 8 ,那么如果频繁的插入删除元素,链表个数又刚好在 8 徘徊,那么就会频繁的发生链表转树,树转链表。

8. 为啥容量都是2的幂?

容量是2的幂时,key 的 hash 值然后 & (容量-1) 确定位置时@H_502_11@碰撞概率会比较低,因为容量为 2 的幂时,减 1 之后的二进制数为全1,这样与运算的结果就等于 hash值后面与 1 进行与运算的几位。

下面是个例子。

hash HEX(97)  = 0110 0001‬
n-1  HEX(15)  = 0000 1111
--------------------------
         结果  = 0000 0001
# 计算得到位置是 1
hash HEX(99)  = 0110 0011‬
n-1  HEX(15)  = 0000 1111
--------------------------
         结果  = 0000 0011
# 计算得到位置是 3
hash HEX(101)  = 0110 0101‬
n-1  HEX(15)   = 0000 1111
--------------------------
         结果   = 0000 0101
# 计算得到位置是 5

如果是其他的容量值,假设是9,进行与运算结果碰撞的概率就比较大。

hash HEX(97)  = 0110 0001‬
n-1  HEX(09)  = 0000 1001
--------------------------
         结果  = 0000 0001
# 计算得到位置是 1
hash HEX(99)  = 0110 0011‬
n-1  HEX(09)  = 0000 1001
--------------------------
         结果  = 0000 0001
# 计算得到位置是 1
hash HEX(101)  = 0110 0101‬
n-1  HEX(09)   = 0000 1001
--------------------------
         结果   = 0000 0001
# 计算得到位置是 1

另外,每次都是 2 的幂也可以让 HashMap 扩容时可以方便的@H_502_11@重新计算位置。

hash HEX(97)  = 0110 0001‬
n-1  HEX(15)  = 0000 1111
--------------------------
         结果  = 0000 0001
# 计算得到位置是 1
    
hash HEX(97)  = 0110 0001‬
n-1  HEX(31)  = 0001 1111
--------------------------
         结果  = 0000 0001
# 计算得到位置是 1

9. 快速失败(fail—fast)

HashMap 遍历使用的是一种快速失败机制,它是 Java 非安全集合中的一种普遍机制,这种机制可以让集合在遍历时,如果有线程对集合进行了修改删除增加操作,会触发并发修改异常。

它的实现机制是在遍历前保存一份 modCount ,在每次获取下一个要遍历的元素时会对比当前的 modCount 和保存的 modCount 是否相等。

快速失败也可以看作是一种@H_502_11@安全机制,这样在多线程操作不安全的集合时,由于快速失败的机制,会抛出异常。

10. 线程安全的 Map

  1. 使用 Collections.synchronizedMap(Map) 创建线程安全的 Map.

    实现原理:有一个变量 final Object mutex; ,操作方法都加了这个 synchronized (mutex) 排它锁。

  2. 使用 Hashtable

  3. 使用 ConcurrentHashMap

<完>
这篇文章到这里就结束了,如果你觉得文章不错可以关注我的公众号。 公众号满载干货,童叟无欺。
也可以访问我的个人网站:https://www.wdbyte.com

猜你在找的程序笔记相关文章