我想在Apache Spark连接中包含空值。 Spark默认情况下不包含null行。
这是默认的Spark行为。
- val numbersDf = Seq(
- ("123"),("456"),(null),("")
- ).toDF("numbers")
- val lettersDf = Seq(
- ("123","abc"),("456","def"),(null,"zzz"),("","hhh")
- ).toDF("numbers","letters")
- val joinedDf = numbersDf.join(lettersDf,Seq("numbers"))
这是joinedDf.show()的输出:
- +-------+-------+
- |numbers|letters|
- +-------+-------+
- | 123| abc|
- | 456| def|
- | | hhh|
- +-------+-------+
这是我想要的输出:
- +-------+-------+
- |numbers|letters|
- +-------+-------+
- | 123| abc|
- | 456| def|
- | | hhh|
- | null| zzz|
- +-------+-------+
解决方法
Scala提供了一个特殊的NULL安全等于运算符:
- numbersDf
- .join(lettersDf,numbersDf("numbers") <=> lettersDf("numbers"))
- .drop(lettersDf("numbers"))
- +-------+-------+
- |numbers|letters|
- +-------+-------+
- | 123| abc|
- | 456| def|
- | null| zzz|
- | | hhh|
- +-------+-------+
小心不要在Spark 1.5或更早版本中使用它。在Spark 1.6之前,它需要一个笛卡尔积(SPARK-11111 – 快速零安全连接)。
在Spark 2.3.0或更高版本中,您可以在PySpark中使用Column.eqNullSafe:
- numbers_df = sc.parallelize([
- ("123",),(None,)
- ]).toDF(["numbers"])
- letters_df = sc.parallelize([
- ("123","hhh")
- ]).toDF(["numbers","letters"])
- numbers_df.join(letters_df,numbers_df.numbers.eqNullSafe(letters_df.numbers))
- +-------+-------+-------+
- |numbers|numbers|letters|
- +-------+-------+-------+
- | 456| 456| def|
- | null| null| zzz|
- | | | hhh|
- | 123| 123| abc|
- +-------+-------+-------+
和SparkR中的%< =>%:
- numbers_df <- createDataFrame(data.frame(numbers = c("123","456",NA,"")))
- letters_df <- createDataFrame(data.frame(
- numbers = c("123",""),letters = c("abc","def","zzz","hhh")
- ))
- head(join(numbers_df,letters_df,numbers_df$numbers %<=>% letters_df$numbers))
- numbers numbers letters
- 1 456 456 def
- 2 <NA> <NA> zzz
- 3 hhh
- 4 123 123 abc
使用sql(Spark 2.2.0),您可以使用IS NOT DISTINCT FROM:
- SELECT * FROM numbers JOIN letters
- ON numbers.numbers IS NOT DISTINCT FROM letters.numbers
这也可以与DataFrame API一起使用:
- numbersDf.alias("numbers")
- .join(lettersDf.alias("letters"))
- .where("numbers.numbers IS NOT DISTINCT FROM letters.numbers")