数据库 – 保持PostgreSQL有时候选择一个坏的查询计划

前端之家收集整理的这篇文章主要介绍了数据库 – 保持PostgreSQL有时候选择一个坏的查询计划前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
使用Postgresql 8.4.9,Postgresql查询性能有一个奇怪的问题.此查询是在3D卷内选择一组点,使用LEFT OUTER JOIN添加相关ID存在的相关ID列. x范围的小小变化可能导致Postgresql选择不同的查询计划,执行时间从0.01秒到50秒.这是有问题的查询
SELECT treenode.id AS id,treenode.parent_id AS parentid,(treenode.location).x AS x,(treenode.location).y AS y,(treenode.location).z AS z,treenode.confidence AS confidence,treenode.user_id AS user_id,treenode.radius AS radius,((treenode.location).z - 50) AS z_diff,treenode_class_instance.class_instance_id AS skeleton_id
  FROM treenode LEFT OUTER JOIN
         (treenode_class_instance INNER JOIN
          class_instance ON treenode_class_instance.class_instance_id
                                                  = class_instance.id
                            AND class_instance.class_id = 7828307)
       ON (treenode_class_instance.treenode_id = treenode.id
           AND treenode_class_instance.relation_id = 7828321)
  WHERE treenode.project_id = 4
    AND (treenode.location).x >= 8000
    AND (treenode.location).x <= (8000 + 4736)
    AND (treenode.location).y >= 22244
    AND (treenode.location).y <= (22244 + 3248)
    AND (treenode.location).z >= 0
    AND (treenode.location).z <= 100
  ORDER BY parentid DESC,id,z_diff
  LIMIT 400;

这个查询需要将近一分钟的时间,如果我将EXPLAIN添加到该查询的前端,似乎使用以下查询计划:

Limit  (cost=56185.16..56185.17 rows=1 width=89)
   ->  Sort  (cost=56185.16..56185.17 rows=1 width=89)
         Sort Key: treenode.parent_id,treenode.id,(((treenode.location).z - 50::double precision))
         ->  Nested Loop Left Join  (cost=6715.16..56185.15 rows=1 width=89)
               Join Filter: (treenode_class_instance.treenode_id = treenode.id)
               ->  Bitmap Heap Scan on treenode  (cost=148.55..184.16 rows=1 width=81)
                     Recheck Cond: (((location).x >= 8000::double precision) AND ((location).x <= 12736::double precision) AND ((location).z >= 0::double precision) AND ((location).z <= 100::double precision))
                     Filter: (((location).y >= 22244::double precision) AND ((location).y <= 25492::double precision) AND (project_id = 4))
                     ->  BitmapAnd  (cost=148.55..148.55 rows=9 width=0)
                           ->  Bitmap Index Scan on location_x_index  (cost=0.00..67.38 rows=2700 width=0)
                                 Index Cond: (((location).x >= 8000::double precision) AND ((location).x <= 12736::double precision))
                           ->  Bitmap Index Scan on location_z_index  (cost=0.00..80.91 rows=3253 width=0)
                                 Index Cond: (((location).z >= 0::double precision) AND ((location).z <= 100::double precision))
               ->  Hash Join  (cost=6566.61..53361.69 rows=211144 width=16)
                     Hash Cond: (treenode_class_instance.class_instance_id = class_instance.id)
                     ->  Seq Scan on treenode_class_instance  (cost=0.00..25323.79 rows=969285 width=16)
                           Filter: (relation_id = 7828321)
                     ->  Hash  (cost=5723.54..5723.54 rows=51366 width=8)
                           ->  Seq Scan on class_instance  (cost=0.00..5723.54 rows=51366 width=8)
                                 Filter: (class_id = 7828307)
(20 rows)

但是,如果我使用10644替换x范围条件中的8000,则查询将在几分之一秒内执行,并使用此查询计划:

Limit  (cost=58378.94..58378.95 rows=2 width=89)
   ->  Sort  (cost=58378.94..58378.95 rows=2 width=89)
         Sort Key: treenode.parent_id,(((treenode.location).z - 50::double precision))
         ->  Hash Left Join  (cost=57263.11..58378.93 rows=2 width=89)
               Hash Cond: (treenode.id = treenode_class_instance.treenode_id)
               ->  Bitmap Heap Scan on treenode  (cost=231.12..313.44 rows=2 width=81)
                     Recheck Cond: (((location).z >= 0::double precision) AND ((location).z <= 100::double precision) AND ((location).x >= 10644::double precision) AND ((location).x <= 15380::double precision))
                     Filter: (((location).y >= 22244::double precision) AND ((location).y <= 25492::double precision) AND (project_id = 4))
                     ->  BitmapAnd  (cost=231.12..231.12 rows=21 width=0)
                           ->  Bitmap Index Scan on location_z_index  (cost=0.00..80.91 rows=3253 width=0)
                                 Index Cond: (((location).z >= 0::double precision) AND ((location).z <= 100::double precision))
                           ->  Bitmap Index Scan on location_x_index  (cost=0.00..149.95 rows=6157 width=0)
                                 Index Cond: (((location).x >= 10644::double precision) AND ((location).x <= 15380::double precision))
               ->  Hash  (cost=53361.69..53361.69 rows=211144 width=16)
                     ->  Hash Join  (cost=6566.61..53361.69 rows=211144 width=16)
                           Hash Cond: (treenode_class_instance.class_instance_id = class_instance.id)
                           ->  Seq Scan on treenode_class_instance  (cost=0.00..25323.79 rows=969285 width=16)
                                 Filter: (relation_id = 7828321)
                           ->  Hash  (cost=5723.54..5723.54 rows=51366 width=8)
                                 ->  Seq Scan on class_instance  (cost=0.00..5723.54 rows=51366 width=8)
                                       Filter: (class_id = 7828307)
(21 rows)

我远不是解析这些查询计划的专家,但是明显的区别似乎是,使用一个x范围,它使用一个哈希左连接作为LEFT OUTER JOIN(这非常快),而使用其他范围一个嵌套循环左连接(这似乎很慢).在这两种情况下,查询返回约90行.如果我在缓慢版本的查询之前将ENABLE_NESTLOOP设置为FALSE,则会非常快,但是我明白了using that setting in general is a bad idea.

例如,我可以创建一个特定的索引,以便使查询计划者更有可能选择明确更有效的策略?有人可以建议为什么Postgresql查询规划师应该为其中一个查询选择如此糟糕的策略?下面我已经包括可能有帮助的模式的详细信息.

treenode表有90万行,定义如下:

Table "public.treenode"
    Column     |           Type           |                      Modifiers                       
---------------+--------------------------+------------------------------------------------------
 id            | bigint                   | not null default nextval('concept_id_seq'::regclass)
 user_id       | bigint                   | not null
 creation_time | timestamp with time zone | not null default now()
 edition_time  | timestamp with time zone | not null default now()
 project_id    | bigint                   | not null
 location      | double3d                 | not null
 parent_id     | bigint                   | 
 radius        | double precision         | not null default 0
 confidence    | integer                  | not null default 5
Indexes:
    "treenode_pkey" PRIMARY KEY,btree (id)
    "treenode_id_key" UNIQUE,btree (id)
    "location_x_index" btree (((location).x))
    "location_y_index" btree (((location).y))
    "location_z_index" btree (((location).z))
Foreign-key constraints:
    "treenode_parent_id_fkey" FOREIGN KEY (parent_id) REFERENCES treenode(id)
Referenced by:
    TABLE "treenode_class_instance" CONSTRAINT "treenode_class_instance_treenode_id_fkey" FOREIGN KEY (treenode_id) REFERENCES treenode(id) ON DELETE CASCADE
    TABLE "treenode" CONSTRAINT "treenode_parent_id_fkey" FOREIGN KEY (parent_id) REFERENCES treenode(id)
Triggers:
    on_edit_treenode BEFORE UPDATE ON treenode FOR EACH ROW EXECUTE PROCEDURE on_edit()
Inherits: location

double3d复合类型定义如下:

Composite type "public.double3d"
 Column |       Type       
--------+------------------
 x      | double precision
 y      | double precision
 z      | double precision

连接中的其他两个表是treenode_class_instance:

Table "public.treenode_class_instance"
      Column       |           Type           |                      Modifiers                       
-------------------+--------------------------+------------------------------------------------------
 id                | bigint                   | not null default nextval('concept_id_seq'::regclass)
 user_id           | bigint                   | not null
 creation_time     | timestamp with time zone | not null default now()
 edition_time      | timestamp with time zone | not null default now()
 project_id        | bigint                   | not null
 relation_id       | bigint                   | not null
 treenode_id       | bigint                   | not null
 class_instance_id | bigint                   | not null
Indexes:
    "treenode_class_instance_pkey" PRIMARY KEY,btree (id)
    "treenode_class_instance_id_key" UNIQUE,btree (id)
    "idx_class_instance_id" btree (class_instance_id)
Foreign-key constraints:
    "treenode_class_instance_class_instance_id_fkey" FOREIGN KEY (class_instance_id) REFERENCES class_instance(id) ON DELETE CASCADE
    "treenode_class_instance_relation_id_fkey" FOREIGN KEY (relation_id) REFERENCES relation(id)
    "treenode_class_instance_treenode_id_fkey" FOREIGN KEY (treenode_id) REFERENCES treenode(id) ON DELETE CASCADE
    "treenode_class_instance_user_id_fkey" FOREIGN KEY (user_id) REFERENCES "user"(id)
Triggers:
    on_edit_treenode_class_instance BEFORE UPDATE ON treenode_class_instance FOR EACH ROW EXECUTE PROCEDURE on_edit()
Inherits: relation_instance

…和class_instance:

Table "public.class_instance"
    Column     |           Type           |                      Modifiers                       
---------------+--------------------------+------------------------------------------------------
 id            | bigint                   | not null default nextval('concept_id_seq'::regclass)
 user_id       | bigint                   | not null
 creation_time | timestamp with time zone | not null default now()
 edition_time  | timestamp with time zone | not null default now()
 project_id    | bigint                   | not null
 class_id      | bigint                   | not null
 name          | character varying(255)   | not null
Indexes:
    "class_instance_pkey" PRIMARY KEY,btree (id)
    "class_instance_id_key" UNIQUE,btree (id)
Foreign-key constraints:
    "class_instance_class_id_fkey" FOREIGN KEY (class_id) REFERENCES class(id)
    "class_instance_user_id_fkey" FOREIGN KEY (user_id) REFERENCES "user"(id)
Referenced by:
    TABLE "class_instance_class_instance" CONSTRAINT "class_instance_class_instance_class_instance_a_fkey" FOREIGN KEY (class_instance_a) REFERENCES class_instance(id) ON DELETE CASCADE
    TABLE "class_instance_class_instance" CONSTRAINT "class_instance_class_instance_class_instance_b_fkey" FOREIGN KEY (class_instance_b) REFERENCES class_instance(id) ON DELETE CASCADE
    TABLE "connector_class_instance" CONSTRAINT "connector_class_instance_class_instance_id_fkey" FOREIGN KEY (class_instance_id) REFERENCES class_instance(id)
    TABLE "treenode_class_instance" CONSTRAINT "treenode_class_instance_class_instance_id_fkey" FOREIGN KEY (class_instance_id) REFERENCES class_instance(id) ON DELETE CASCADE
Triggers:
    on_edit_class_instance BEFORE UPDATE ON class_instance FOR EACH ROW EXECUTE PROCEDURE on_edit()
Inherits: concept

解决方法

如果查询计划者做出不好的决定,这主要是两件事之一:

统计资料已关闭.意思是“不准确”,而不是“关闭”.

你是否运行ANALYZE?也是受欢迎的组合形式VACUUM ANALYZE.如果autovacuum开启(这是现代Postgres中的默认设置),ANALYZE将自动运行.但请考虑:

> Are regular VACUUM ANALYZE still recommended under 9.1?

(Top两个答案仍然适用于Postgres 9.6.)

如果你的桌子很大,数据分配不均衡,提高default_statistics_target可能会有所帮助.或者更确切地说,set the statistics target是相关的列(基本上是WHERE或JOIN的查询条款):

ALTER TABLE ... ALTER COLUMN ... SET STATISTICS 1234;  -- calibrate number

The target can be set in the range 0 to 10000;

再次运行ANALYZE(在相关的表).

>计划员估计的成本设置已关闭.

请阅读手册中的Planner Cost Constants章.

看看这个generally helpful PostgreSQL Wiki page的章节default_statistics_target和random_page_cost.

当然可以有很多其他的原因,但这些是最常见的.

原文链接:https://www.f2er.com/mssql/82117.html

猜你在找的MsSQL相关文章