在网上有很多文章 介绍数据库 优化知识,但是大部份文章 只是对某个一个方面进行说明,而对于我们程序员来说这种介绍并不能很好的掌握优化知识,因为很多介绍只是对一些特定的场景优化的,所以反而有时会产生误导或让程序员感觉不明白其中的奥妙而对数据库 优化感觉很神秘。
很多程序员总是问如何学习数据库 优化,有没有好的教材之类的问题。在书店也看到了许多数据库 优化的专业书籍,但是感觉更多是面向DBA或者是PL/sql 开发方面的知识,个人感觉不太适合普通程序员。而要想做到数据库 优化的高手,不是花几周,几个月就能达到的,这并不是因为数据库 优化有多高深,而是因为要做好优化一方面需要有非常好的技术功底,对操作系统、存储硬件网络、数据库 原理等方面有比较扎实的基础知识,另一方面是需要花大量时间对特定的数据库 进行实践测试与总结。
作为一个程序员,我们也许不清楚线上正式的服务器硬件配置,我们不可能像DBA那样专业的对数据库 进行各种实践测试与总结,但我们都应该非常了解我们sql 的业务逻辑,我们清楚sql 中访问表及字段的数据情况,我们其实只关心我们的sql 是否能尽快返回结果。那程序员如何利用已知的知识进行数据库 优化?如何能快速 定位sql 性能 问题并找到正确的优化方向?
面对这些问题,笔者总结了一些面向程序员的基本优化法则,本文将结合实例来坦述数据库 开发的优化知识。
一、数据库 访问优化法则简介
要正确的优化sql ,我们需要快速 定位能性的瓶颈点,也就是说快速 找到我们sql 主要的开销在哪里?而大多数情况性能 最慢的设备会是瓶颈点,如下载时网络速度可能会是瓶颈点,本地复制文件 时硬盘可能会是瓶颈点,为什么这些一般的工作我们能快速 确认瓶颈点呢,因为我们对这些慢速设备的性能 数据有一些基本的认识,如网络带宽是2Mbps,硬盘是每分钟7200转等等。因此,为了快速 找到sql 的性能 瓶颈点,我们也需要了解我们计算机系统的硬件基本性能 指标,下图展示的当前主流计算机性能 指标数据。
从图上可以看到基本上每种设备都有
两个指标 :
延时(响应时间 )
: 表示硬件的突发处理能力;
带宽(吞吐量): 代表硬件持续处理能力。
从上图可以看出,计算机系统硬件
性能 从高到代依次为:
cpu ——Cache(L1-L2-L3)——内存——SSD硬盘——网络——硬盘
由于SSD硬盘还处于
快速 发展阶段,所以本文的
内容 不涉及SSD相关应用系统。
根据
数据库 知识,我们可以列出每种硬件主要的工作
内容 :
cpu 及内存:缓存数据访问、比较、排序、事务检测、
sql 解析、
函数 或逻辑运算;
网络:结果数据传输、
sql 请求、远程
数据库 访问(dblink);
硬盘:数据访问、数据写入、日志记录、大数据量排序、大表连接。
根据当前计算机硬件的基本
性能 指标及其在
数据库 中主要操作
内容 ,可以整理出如下图所示的
性能 基本优化法则:
404_38@
这个优化法则归纳为
5个层次 :
1、 减少数据访问(减少磁盘访问)
2、 返回更少数据(减少网络传输或磁盘访问)
3、 减少交互
次数 (减少网络传输)
4、 减少服务器
cpu 开销(减少
cpu 及内存开销)
5、 利用更多资源(
增加 资源)
由于每一层优化法则都是
解决 其对应硬件的
性能 问题,所以带来的
性能 提升比例也不一样。传统
数据库 系统设计是也是尽可能对低速设备提供优化
方法 ,因此针对低速设备问题的可优化手段也更多,优化成本也更低。我们任何一个
sql 的
性能 优化都应该按这个规则由上到下来诊断问题并提出
解决方 案,而不应该首先想到的是
增加 资源
解决 问题。
以下是每个优化法则层级对应优化
效果 及成本经验参考:
接下来,我们针对5种优化法则列举常用的优化手段并结合实例分析。
二、Oracle数据库 两个基本概念
数据块(Block)
数据块是
数据库 中数据在磁盘中存储的最小单位,也是一次IO访问的最小单位,一个数据块通常可以存储多条记录,数据块大小是DBA在创建
数据库 或表空间时指定,可指定为2K、4K、8K、16K或32K字节。下图是一个Oracle
数据库 典型的物理结构,一个
数据库 可以
包括 多个数据
文件 ,一个数据
文件 内又包含多个数据块;
ROWID
ROWID是每条记录在
数据库 中的唯一标识,通过ROWID可以直接定位记录到对应的
文件 号及数据块位置。ROWID
内容 包括 文件 号、对像号、数据块号、记录槽号,如下图所示:
三、数据库 访问优化法则详解
1、减少数据访问
1.1、创建并使用正确的索引
数据库 索引的原理非常简单,但在复杂的表中真正能正确使用索引的人很少,即使是专业的DBA也不一定能完全做到最优。
索引会大大
增加 表记录的DML(INSERT,UPDATE,DELETE)开销,正确的索引可以让
性能 提升100,1000倍以上,不合理的索引也可能会让
性能 下降100倍,因此在一个表中创建什么样的索引需要平衡各种业务需求。
索引常见问题:
索引有哪些种类?
常见的索引有B-TREE索引、位图索引、全文索引,位图索引一般用于数据仓库应用,全文索引由于使用较少,这里不深入介绍。B-TREE索引
包括 很多扩展类型,如组合索引、反向索引、
函数 索引等等,以下是B-TREE索引的简单介绍:
B-TREE索引也称为平衡树索引(Balance Tree),它是一种按字段排好序的树形目录结构,主要用于提升
查询 性能 和唯一约束
支持 。B-TREE索引的
内容 包括 根节点、分支节点、叶子节点。
叶子节点内容 : 索引字段
内容 +表记录ROWID
根节点,分支节点内容 : 当一个数据块中不能放下所有索引字段数据时,就会形成树形的根节点或分支节点,根节点与分支节点保存了索引树的顺序及各层级间的引用关系。
一个普通的BTREE索引结构示意图如下所示:
如果我们把一个表的内容 认为是一本字典,那索引就相当于字典的目录,如下图所示:
图中是一个字典按部首+笔划数的目录,相当于给字典建了一个按部首+笔划的组合索引。
一个表中可以建多个索引,就如一本字典可以建多个目录一样(按拼音、笔划、部首等等)。
一个索引也可以由多个字段组成,称为组合索引,如上图就是一个按部首+笔划的组合目录。
sql 什么条件会使用索引?
当字段上建有索引时,通常以下情况会使用索引:
INDEX_COLUMN = ?
INDEX_COLUMN > ?
INDEX_COLUMN >= ?
INDEX_COLUMN < ?
INDEX_COLUMN <= ?
INDEX_COLUMN between ? and ?
INDEX_COLUMN in (?,?,...,?)
INDEX_COLUMN like ?||'%'(后导模糊
查询 )
T1. INDEX_COLUMN=T2. COLUMN1(两个表通过索引字段关联)
sql 什么条件不会使用索引?
我们一般在什么字段上建索引?
这是一个非常复杂的话题,需要对业务及数据充分分析后再能得出结果。主键及外键通常都要有索引,其它需要建索引的字段应满足以下条件:
1、字段出现在
查询 条件中,并且
查询 条件可以使用索引;
2、语句执行频率高,一天会有几千次以上;
3、通过字段条件可筛选的记录集很小,那数据筛选比例是多少才适合?
这个没有固定值,需要根据表数据量来评估,以下是经验公式,可用于
快速 评估:
小表(记录数小于10000行的表):筛选比例<10%;
大表:(筛选返回记录数)<(表总记录数*单条记录长度)/10000/16
单条记录长度≈字段平均内容 长度之和+字段数*2
以下是一些字段是否需要建B-TREE索引的经验
分类 :
如何知道sql 是否使用了正确的索引?
简单
sql 可以根据索引使用语法规则判断,复杂的
sql 不好办,判断
sql 的响应时间是一种策略,但是这会受到数据量、主机
负载 及缓存等因素的影响,有时数据全在缓存里,可能全表访问的时间比索引访问时间还少。要准确知道索引是否正确使用,需要到
数据库 中查看
sql 真实的执行计划,这个话题比较复杂,详见
sql 执行计划专题介绍。
索引对DML(INSERT,DELETE)附加的开销有多少?
这个没有固定的比例,与每个表记录的大小及索引字段大小密切相关,以下是一个普通表测试数据,仅供参考:
索引对于Insert
性能 降低56%
索引对于Update
性能 降低47%
索引对于Delete
性能 降低29%
因此对于写IO压力比较大的系统,表的索引需要仔细评估必要性,另外索引也会占用一定的存储空间。
1.2、只通过索引访问数据
有些时候,我们只是访问表中的几个字段,并且字段
内容 较少,我们可以为这几个字段单独建立一个组合索引,这样就可以直接只通过访问索引就能得到数据,一般索引占用的磁盘空间比表小很多,所以这种方式可以大大减少磁盘IO开销。
如:select id,name from company where type='2';
如果这个
sql 经常使用,我们可以在type,id,name上创建组合索引
create index my_comb_index on company(type,name);
有了这个组合索引后,
sql 就可以直接通过my_comb_index索引返回数据,不需要访问company表。
还是拿字典举例:有一个需求,需要
查询 一本汉语字典中所有汉字的个数,如果我们的字典没有目录索引,那我们只能从字典
内容 里一个一个字计数,最后返回结果。如果我们有一个拼音目录,那就可以只访问拼音目录的汉字进行计数。如果一本字典有1000页,拼音目录有20页,那我们的数据访问成本相当于全表访问的50分之一。
切记,
性能 优化是无止境的,当
性能 可以满足需求时即可,不要过度优化。在实际
数据库 中我们不可能把每个
sql 请求的字段都建在索引里,所以这种只通过索引访问数据的
方法 一般只用于核心应用,也就是那种对核心表访问量最高且
查询 字段数据量很少的
查询 。
1.3、优化sql 执行计划
sql 执行计划是关系型
数据库 最核心的技术之一,它表示
sql 执行时的数据访问算法。由于业务需求越来越复杂,表数据量也越来越大,程序员越来越懒惰,
sql 也需要
支持 非常复杂的业务逻辑,但
sql 的
性能 还需要提高,因此,优秀的关系型
数据库 除了需要
支持 复杂的
sql 语法及更多
函数 外,还需要有一套优秀的算法库来提高
sql 性能 。
目前ORACLE有
sql 执行计划的算法约300种,而且一直在
增加 ,所以
sql 执行计划是一个非常复杂的课题,一个普通DBA能掌握50种就很不错了,就算是资深DBA也不可能把每个执行计划的算法描述清楚。虽然有这么多种算法,但并不表示我们无法优化执行计划,因为我们常用的
sql 执行计划算法也就十几个,如果一个程序员能把这十几个算法搞清楚,那就掌握了80%的
sql 执行计划调优知识。
由于篇幅的原因,
sql 执行计划需要专题介绍,在这里就不多说了。
2、返回更少的数据
2.1、数据分页 处理
一般数据
分页 方式有:
2.1.1、客户端(应用程序或浏览器)分页
将数据从应用服务器全部下载到本地应用程序或浏览器,在应用程序或浏览器内部通过本地
代码 进行
分页 处理
优点:编码简单,减少客户端与应用服务器网络交互
次数
缺点:首次交互时间长,占用客户端内存
适应场景:客户端与应用服务器网络延时较大,但要求后续操作流畅,如手机GPRS,超远程访问(跨国)等等。
2.1.2、应用服务器分页
将数据从
数据库 服务器全部下载到应用服务器,在应用服务器内部再进行数据筛选。以下是一个应用服务器端Java程序
分页 的示例:
List list=executeQuery(“select * from employee order by id”);
Int count= list.size();
List subList= list.subList(10,20);
优点:编码简单,只需要一次
sql 交互,总数据与
分页 数据差不多时
性能 较好。
缺点:总数据量较多时
性能 较差。
适应场景:
数据库 系统
不支持 分页 处理,数据量较小并且可控。
采用
数据库 sql 分页 需要两次
sql 完成
一个
sql 计算总
数量
一个
sql 返回
分页 后的数据
优点:
性能 好
缺点:编码复杂,各种
数据库 语法不同,需要两次
sql 交互。
oracle
数据库 一般采用rownum来进行
分页 ,常用
分页 语法有如下两种:
直接通过rownum分页 :
sql;">
select * from (
select a.*,rownum rn from
(select * from product a where company_id=? order by status) a
where rownum<=20)
where rn>10;
数据访问开销=索引IO+索引全部记录结果对应的表数据IO
采用rowid分页 语法
优化原理是通过纯索引找出
分页 记录的ROWID,再通过ROWID回表返回数据,要求内层
查询 和排序字段全在索引里。
sql;">
create index myindex on product(company_id,status);
select b. from (
select from (
select a.*,rownum rn from
(select rowid rid,status from product a where company_id=? order by status) a
where rownum<=20)
where rn>10) a,product b
where a.rid=b.rowid;
数据访问开销=索引IO+索引分页 结果对应的表数据IO
实例:
一个公司产品有1000条记录,要分页 取其中20个产品,假设访问公司索引需要50个IO,2条记录需要1个表数据IO。
那么按第一种ROWNUM分页 写法,需要550(50+1000/2)个IO,按第二种ROWID分页 写法,只需要60个IO(50+20/2);
2.2、只返回需要的字段
通过
去除 不必要的返回字段可以提高
性能 ,例:
调整前:select * from product where company_id=?;
调整后:select id,name from product where company_id=?;
优点:
1、减少数据在网络
上传 输开销
2、减少服务器数据处理开销
3、减少客户端内存占用
4、字段变更时提前发现问题,减少程序BUG
5、如果访问的所有字段刚好在一个索引里面,则可以使用纯索引访问提高
性能 。
缺点:
增加 编码工作量
由于会
增加 一些编码工作量,所以一般需求通过开发规范来要求程序员这么做,否则等项目上线后再整改工作量更大。
如果你的
查询 表中有大字段或
内容 较多的字段,如备注信息、
文件 内容 等等,那在
查询 表时一定要注意这方面的问题,否则可能会带来严重的
性能 问题。如果表经常要
查询 并且请求大
内容 字段的概率很低,我们可以采用分表处理,将一个大表分拆成两个一对一的关系表,将不常用的大
内容 字段放在一张单独的表中。如一张存储
上传 文件 的表:
T_FILE(ID,FILE_NAME,FILE_SIZE,FILE_TYPE,FILE_CONTENT)
我们可以分拆成两张一对一的关系表:
T_FILE(ID,FILE_TYPE)
T_FILECONTENT(ID,FILE_CONTENT)
通过这种分拆,可以大大提少T_FILE表的单条记录及总大小,这样在
查询 T_FILE时
性能 会更好,当需要
查询 FILE_CONTENT字段
内容 时再访问T_FILECONTENT表。
3、减少交互
次数
3.1、batch DML
数据库 访问框架一般都提供了批量提交的接口,jdbc
支持 batch的提交处理
方法 ,当你一次性要往一个表中插入1000万条数据时,如果采用普通的executeUpdate处理,那么和服务器交互
次数 为1000万次,按每秒钟可以向
数据库 服务器提交10000次估算,要完成所有工作需要1000秒。如果采用批量提交模式,1000条提交一次,那么和服务器交互
次数 为1万次,交互
次数 大大减少。采用batch操作一般不会减少很多
数据库 服务器的物理IO,但是会大大减少客户端与服务端的交互
次数 ,从而减少了多次发起的网络延时开销,同时也会降低
数据库 的
cpu 开销。
假设要向一个普通表插入1000万数据,每条记录大小为1K字节,表上没有任何索引,客户端与
数据库 服务器网络是100Mbps,以下是根据现在一般计算机能力估算的各种batch大小
性能 对比值:
从上可以看出,Insert操作加大Batch可以对性能 提高近8倍性能 ,一般根据主键的Update或Delete操作也可能提高2-3倍性能 ,但不如Insert明显,因为Update及Delete操作可能有比较大的开销在物理IO访问。以上仅是理论计算值,实际情况需要根据具体环境测量。
3.2、In List
很多时候我们需要按一些ID
查询 数据库 记录,我们可以采用一个ID一个请求发给
数据库 ,如下所示:
for :var in ids[] do begin
select * from mytable where id=:var;
end;
我们也可以做一个小的优化, 如下所示,用ID INLIST的这种方式写
sql :
select * from mytable where id in(:id1,id2,idn);
通过这样处理可以大大减少
sql 请求的
数量 ,从而提高
性能 。那如果有10000个ID,那是不是全部放在一条
sql 里处理呢?答案肯定是否定的。首先大部份
数据库 都会有
sql 长度和IN里个数的限制,如ORACLE的IN里就不允许超过1000个值。
另外当前
数据库 一般都是采用基于成本的优化规则,当IN
数量 达到一定值时有可能改变
sql 执行计划,从索引访问变成全表访问,这将使
性能 急剧变化。随着
sql 中IN的里面的值个数
增加 ,
sql 的执行计划会更复杂,占用的内存将会变大,这将会
增加 服务器
cpu 及内存成本。
评估在IN里面一次放多少个值还需要考虑应用服务器本地内存的开销,有并发访问时要计算本地数据使用周期内的并发上限,否则可能会导致内存溢出。
综合考虑,一般IN里面的值个数超过20个以后
性能 基本没什么太大变化,也特别说明不要超过100,超过后可能会引起执行计划的不稳定性及
增加 数据库 cpu 及内存成本,这个需要专业DBA评估。
3.3、设置Fetch Size
当我们采用select从
数据库 查询 数据时,数据默认并不是一条一条返回给客户端的,也不是一次全部返回客户端的,而是根据客户端fetch_size参数处理,每次只返回fetch_size条记录,当客户端游标遍历到尾部时再从服务端取数据,直到最后全部传送完成。所以如果我们要从服务端一次取大量数据时,可以加大fetch_size,这样可以减少结果数据传输的交互
次数 及服务器数据准备时间,提高
性能 。
以下是jdbc测试的
代码 ,采用本地
数据库 ,表缓存在
数据库 CACHE中,因此没有网络连接及磁盘IO开销,客户端只遍历游标,不做任何处理,这样更能体现fetch参数的影响:
sql;">
String v
sql ="select * from t_employee";
PreparedStatement pstmt = conn.prepareStatement(v
sql ,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY);
pstmt.setFetchSize(1000);
ResultSet rs = pstmt.executeQuery(v
sql );
int cnt = rs.get
Meta Data().getColumnCount();
Object o;
while (rs.next()) {
for (int i = 1; i <= cnt; i++) {
o = rs.getObject(i);
}
}
测试示例中的employee表有100000条记录,每条记录平均长度135字节
以下是测试结果,对每种fetchsize测试5次再取平均值:
Oracle jdbc fetchsize默认值为10,由上测试可以看出fetchsize对性能 影响还是比较大的,但是当fetchsize大于100时就基本上没有影响了。fetchsize并不会存在一个最优的固定值,因为整体性能 与记录集大小及硬件平台有关。根据测试结果建议当一次性要取大量数据时这个值设置为100左右,不要小于40。注意,fetchsize不能设置太大,如果一次取出的数据大于JVM的内存会导致内存溢出,所以建议不要超过1000,太大了也没什么性能 提高,反而可能会增加 内存溢出的危险。
注:图中fetchsize在128以后会有一些小的波动,这并不是测试误差,而是由于resultset填充到具体对像时间不同的原因,由于resultset已经到本地内存里了,所以估计是由于cpu 的L1,L2 Cache命中率变化造成,由于变化不大,所以笔者也未深入分析原因。
iBatis的sql Mapping配置文件 可以对每个sql 语句指定fetchsize大小,如下所示:
sql;">
3.4、使用存储过程
大型数据库一般都支持存储过程,合理的利用存储过程也可以提高系统性能。如你有一个业务需要将A表的数据做一些加工然后更新到B表中,但是又不可能一条sql完成,这时你需要如下3步操作:
a:将A表数据全部取出到客户端;
b:计算出要更新的数据;
c:将计算结果更新到B表。
如果采用存储过程你可以将整个业务逻辑封装在存储过程里,然后在客户端直接调用存储过程处理,这样可以减少网络交互的成本。
当然,存储过程也并不是十全十美,存储过程有以下缺点:
a、不可移植性,每种数据库的内部编程语法都不太相同,当你的系统需要兼容多种数据库时最好不要用存储过程。
b、学习成本高,DBA一般都擅长写存储过程,但并不是每个程序员都能写好存储过程,除非你的团队有较多的开发人员熟悉写存储过程,否则后期系统维护会产生问题。
c、业务逻辑多处存在,采用存储过程后也就意味着你的系统有一些业务逻辑不是在应用程序里处理,这种架构会增加一些系统维护和调试成本。
d、存储过程和常用应用程序语言不一样,它支持的函数及语法有可能不能满足需求,有些逻辑就只能通过应用程序处理。
e、如果存储过程中有复杂运算的话,会增加一些数据库服务端的处理成本,对于集中式数据库可能会导致系统可扩展性问题。
f、为了提高性能,数据库会把存储过程代码编译成中间运行代码(类似于java的class文件),所以更像静态语言。当存储过程引用的对像(表、视图等等)结构改变后,存储过程需要重新编译才能生效,在24*7高并发应用场景,一般都是在线变更结构的,所以在变更的瞬间要同时编译存储过程,这可能会导致数据库瞬间压力上升引起故障(Oracle数据库就存在这样的问题)。
个人观点:普通业务逻辑尽量不要使用存储过程,定时性的ETL任务或报表统计函数可以根据团队资源情况采用存储过程处理。
3.5、优化业务逻辑
要通过优化业务逻辑来提高性能是比较困难的,这需要程序员对所访问的数据及业务流程非常清楚。
举一个案例:
某移动公司推出优惠套参,活动对像为VIP会员并且2010年1,2,3月平均话费20元以上的客户。
那我们的检测逻辑为:
20 and vip_flag=true then
begin
执行套参();
end;
如果我们修改业务逻辑为:
20 then
begin
select vip_flag from member where phone_no='13988888888';
if vip_flag=true then
begin
执行套参();
end;
end;
通过这样可以减少一些判断vip_flag的开销,平均话费20元以下的用户就不需要再检测是否VIP了。
如果程序员分析业务,VIP会员比例为1%,平均话费20元以上的用户比例为90%,那我们改成如下:
20 then
begin
执行套参();
end;
end;
这样就只有1%的VIP会员才会做检测平均话费,最终大大减少了sql的交互次数。
以上只是一个简单的示例,实际的业务总是比这复杂得多,所以一般只是高级程序员更容易做出优化的逻辑,但是我们需要有这样一种成本优化的意识。
3.6、使用ResultSet游标处理记录
现在大部分Java框架都是通过jdbc从数据库取出数据,然后装载到一个list里再处理,list里可能是业务Object,也可能是hashmap。
由于JVM内存一般都小于4G,所以不可能一次通过sql把大量数据装载到list里。为了完成功能,很多程序员喜欢采用分页的方法处理,如一次从数据库取1000条记录,通过多次循环搞定,保证不会引起JVM Out of memory问题。
以下是实现此功能的代码示例,t_employee表有10万条记录,设置分页大小为1000:
sql;">
d1 = Calendar.getInstance().getTime();
vsql = "select count(*) cnt from t_employee";
pstmt = conn.prepareStatement(vsql);
ResultSet rs = pstmt.executeQuery();
Integer cnt = 0;
while (rs.next()) {
cnt = rs.getInt("cnt");
}
Integer lastid=0;
Integer pagesize=1000;
System.out.println("cnt:" + cnt);
String vsql = "select count(*) cnt from t_employee";
PreparedStatement pstmt = conn.prepareStatement(vsql);
ResultSet rs = pstmt.executeQuery();
Integer cnt = 0;
while (rs.next()) {
cnt = rs.getInt("cnt");
}
Integer lastid = 0;
Integer pagesize = 1000;
System.out.println("cnt:" + cnt);
for (int i = 0; i <= cnt / pagesize; i++) {
vsql = "select * from (select * from t_employee where id>? order by id) where rownum<=?";
pstmt = conn.prepareStatement(vsql);
pstmt.setFetchSize(1000);
pstmt.setInt(1,lastid);
pstmt.setInt(2,pagesize);
rs = pstmt.executeQuery();
int col_cnt = rs.getMetaData().getColumnCount();
Object o;
while (rs.next()) {
for (int j = 1; j <= col_cnt; j++) {
o = rs.getObject(j);
}
lastid = rs.getInt("id");
}
rs.close();
pstmt.close();
}
以上代码实际执行时间为6.516秒
很多持久层框架为了尽量让程序员使用方便,封装了jdbc通过statement执行数据返回到resultset的细节,导致程序员会想采用分页的方式处理问题。实际上如果我们采用jdbc原始的resultset游标处理记录,在resultset循环读取的过程中处理记录,这样就可以一次从数据库取出所有记录。显著提高性能。
这里需要注意的是,采用resultset游标处理记录时,应该将游标的打开方式设置为FORWARD_READONLY模式(ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY),否则会把结果缓存在JVM里,造成JVM Out of memory问题。
代码示例:
sql;">
String vsql ="select * from t_employee";
PreparedStatement pstmt = conn.prepareStatement(vsql,ResultSet.CONCUR_READ_ONLY);
pstmt.setFetchSize(100);
ResultSet rs = pstmt.executeQuery(vsql);
int col_cnt = rs.getMetaData().getColumnCount();
Object o;
while (rs.next()) {
for (int j = 1; j <= col_cnt; j++) {
o = rs.getObject(j);
}
}
调整后的代码实际执行时间为3.156秒
从测试结果可以看出性能提高了1倍多,如果采用分页模式数据库每次还需发生磁盘IO的话那性能可以提高更多。
iBatis等持久层框架考虑到会有这种需求,所以也有相应的解决方案,在iBatis里我们不能采用queryForList的方法,而应用该采用queryWithRowHandler加回调事件的方式处理,如下所示:
sql;">
MyRowHandler myrh=new MyRowHandler();
sqlmap.queryWithRowHandler("getAllEmployee",myrh);
class MyRowHandler implements RowHandler {
public void handleRow(Object o) {
//todo something
}
}
iBatis的queryWithRowHandler很好的封装了resultset遍历的事件处理,效果及性能与resultset遍历一样,也不会产生JVM内存溢出。
4、减少数据库服务器cpu运算
4.1、使用绑定变量
绑定变量是指sql中对变化的值采用变量参数的形式提交,而不是在sql中直接拼写对应的值。
非绑定变量写法:Select * from employee where id=1234567
绑定变量写法:
Select * from employee where id=?
Preparestatement.setInt(1,1234567)
Java中Preparestatement就是为处理绑定变量提供的对像,绑定变量有以下优点:
1、防止sql注入
2、提高sql可读性
3、提高sql解析性能,不使用绑定变更我们一般称为硬解析,使用绑定变量我们称为软解析。
第1和第2点很好理解,做编码的人应该都清楚,这里不详细说明。关于第3点,到底能提高多少性能呢,下面举一个例子说明:
假设有这个这样的一个数据库主机:
2个4核cpu
100块磁盘,每个磁盘支持IOPS为160
业务应用的sql如下:
select * from table where pk=?
这个sql平均4个IO(3个索引IO+1个数据IO)
IO缓存命中率75%(索引全在内存中,数据需要访问磁盘)
sql硬解析cpu消耗:1ms (常用经验值)
sql软解析cpu消耗:0.02ms(常用经验值)
假设cpu每核性能是线性增长,访问内存Cache中的IO时间忽略,要求计算系统对如上应用采用硬解析与采用软解析支持的每秒最大并发数:
从以上计算可以看出,不使用绑定变量的系统当并发达到8000时会在cpu上产生瓶颈,当使用绑定变量的系统当并行达到16000时会在磁盘IO上产生瓶颈。所以如果你的系统cpu有瓶颈时请先检查是否存在大量的硬解析操作。
使用绑定变量为何会提高sql解析性能,这个需要从数据库sql执行原理说明,一条sql在Oracle数据库中的执行过程如下图所示:
当一条sql发送给数据库服务器后,系统首先会将sql字符串进行hash运算,得到hash值后再从服务器内存里的sql缓存区中进行检索,如果有相同的sql字符,并且确认是同一逻辑的sql语句,则从共享池缓存中取出sql对应的执行计划,根据执行计划读取数据并返回结果给客户端。
如果在共享池中未发现相同的sql则根据sql逻辑生成一条新的执行计划并保存在sql缓存区中,然后根据执行计划读取数据并返回结果给客户端。
为了更快的检索sql是否在缓存区中,首先进行的是sql字符串hash值对比,如果未找到则认为没有缓存,如果存在再进行下一步的准确对比,所以要命中sql缓存区应保证sql字符是完全一致,中间有大小写或空格都会认为是不同的sql。
如果我们不采用绑定变量,采用字符串拼接的模式生成sql,那么每条sql都会产生执行计划,这样会导致共享池耗尽,缓存命中率也很低。
一些不使用绑定变量的场景:
a、数据仓库应用,这种应用一般并发不高,但是每个sql执行时间很长,sql解析的时间相比sql执行时间比较小,绑定变量对性能提高不明显。数据仓库一般都是内部分析应用,所以也不太会发生sql注入的安全问题。
b、数据分布不均匀的特殊逻辑,如产品表,记录有1亿,有一产品状态字段,上面建有索引,有审核中,审核通过,审核未通过3种状态,其中审核通过9500万,审核中1万,审核不通过499万。
要做这样一个查询:
select count(*) from product where status=?
采用绑定变量的话,那么只会有一个执行计划,如果走索引访问,那么对于审核中查询很快,对审核通过和审核不通过会很慢;如果不走索引,那么对于审核中与审核通过和审核不通过时间基本一样;
对于这种情况应该不使用绑定变量,而直接采用字符拼接的方式生成sql,这样可以为每个sql生成不同的执行计划,如下所示。
select count(*) from product where status='approved'; //不使用索引
select count(*) from product where status='tbd'; //不使用索引
select count(*) from product where status='auditing';//使用索引
4.2、合理使用排序
Oracle的排序算法一直在优化,但是总体时间复杂度约等于nLog(n)。普通OLTP系统排序操作一般都是在内存里进行的,对于数据库来说是一种cpu的消耗,曾在PC机做过测试,单核普通cpu在1秒钟可以完成100万条记录的全内存排序操作,所以说由于现在cpu的性能增强,对于普通的几十条或上百条记录排序对系统的影响也不会很大。但是当你的记录集增加到上万条以上时,你需要注意是否一定要这么做了,大记录集排序不仅增加了cpu开销,而且可能会由于内存不足发生硬盘排序的现象,当发生硬盘排序时性能会急剧下降,这种需求需要与DBA沟通再决定,取决于你的需求和数据,所以只有你自己最清楚,而不要被别人说排序很慢就吓倒。
以下列出了可能会发生排序操作的sql语法:
Order by
Group by
Distinct
Exists子查询
Not Exists子查询
In子查询
Not In子查询
Union(并集),Union All也是一种并集操作,但是不会发生排序,如果你确认两个数据集不需要执行去除重复数据操作,那请使用Union All 代替Union。
Minus(差集)
Intersect(交集)
Create Index
Merge Join,这是一种两个表连接的内部算法,执行时会把两个表先排序好再连接,应用于两个大表连接的操作。如果你的两个表连接的条件都是等值运算,那可以采用Hash Join来提高性能,因为Hash Join使用Hash 运算来代替排序的操作。具体原理及设置参考sql执行计划优化专题。
4.3、减少比较操作
我们sql的业务逻辑经常会包含一些比较操作,如a=b,a数据库都体现得很好,但是如果有以下操作,我们需要保持警惕:
Like模糊查询,如下所示:
a like ‘%abc%'
Like模糊查询对于数据库来说不是很擅长,特别是你需要模糊检查的记录有上万条以上时,性能比较糟糕,这种情况一般可以采用专用Search或者采用全文索引方案来提高性能。
不能使用索引定位的大量In List,如下所示:
a in (:1,:2,:3,…,:n) ----n>20
如果这里的a字段不能通过索引比较,那数据库会将字段与in里面的每个值都进行比较运算,如果记录数有上万以上,会明显感觉到sql的cpu开销加大,这个情况有两种解决方式:
a、 将in列表里面的数据放入一张中间小表,采用两个表Hash Join关联的方式处理;
b、 采用str2varList方法将字段串列表转换一个临时表处理,关于str2varList方法可以在网上直接查询,这里不详细介绍。
以上两种解决方案都需要与中间表Hash Join的方式才能提高性能,如果采用了Nested Loop的连接方式性能会更差。
如果发现我们的系统IO没问题但是cpu负载很高,就有可能是上面的原因,这种情况不太常见,如果遇到了最好能和DBA沟通并确认准确的原因。
4.4、大量复杂运算在客户端处理
什么是复杂运算,一般我认为是一秒钟cpu只能做10万次以内的运算。如含小数的对数及指数运算、三角函数、3DES及BASE64数据加密算法等等。
如果有大量这类函数运算,尽量放在客户端处理,一般cpu每秒中也只能处理1万-10万次这样的函数运算,放在数据库内不利于高并发处理。
5、利用更多的资源
5.1、客户端多进程并行访问
多进程并行访问是指在客户端创建多个进程(线程),每个进程建立一个与数据库的连接,然后同时向数据库提交访问请求。当数据库主机资源有空闲时,我们可以采用客户端多进程并行访问的方法来提高性能。如果数据库主机已经很忙时,采用多进程并行访问性能不会提高,反而可能会更慢。所以使用这种方式最好与DBA或系统管理员进行沟通后再决定是否采用。
例如:
我们有10000个产品ID,现在需要根据ID取出产品的详细信息,如果单线程访问,按每个IO要5ms计算,忽略主机cpu运算及网络传输时间,我们需要50s才能完成任务。如果采用5个并行访问,每个进程访问2000个ID,那么10s就有可能完成任务。
那是不是并行数越多越好呢,开1000个并行是否只要50ms就搞定,答案肯定是否定的,当并行数超过服务器主机资源的上限时性能就不会再提高,如果再增加反而会增加主机的进程间调度成本和进程冲突机率。
以下是一些如何设置并行数的基本建议:
如果瓶颈在服务器主机,但是主机还有空闲资源,那么最大并行数取主机cpu核数和主机提供数据服务的磁盘数两个参数中的最小值,同时要保证主机有资源做其它任务。
如果瓶颈在客户端处理,但是客户端还有空闲资源,那建议不要增加sql的并行,而是用一个进程取回数据后在客户端起多个进程处理即可,进程数根据客户端cpu核数计算。
如果瓶颈在客户端网络,那建议做数据压缩或者增加多个客户端,采用map reduce的架构处理。
如果瓶颈在服务器网络,那需要增加服务器的网络带宽或者在服务端将数据压缩后再处理了。
5.2、数据库并行处理
数据库并行处理是指客户端一条sql的请求,数据库内部自动分解成多个进程并行处理,如下图所示:
并不是所有的sql都可以使用并行处理,一般只有对表或索引进行全部访问时才可以使用并行。数据库表默认是不打开并行访问,所以需要指定sql并行的提示,如下所示:
select /*+parallel(a,4)*/ * from employee;
并行的优点:
使用多进程处理,充分利用数据库主机资源(cpu,IO),提高性能。
并行的缺点:
1、单个会话占用大量资源,影响其它会话,所以只适合在主机负载低时期使用;
2、只能采用直接IO访问,不能利用缓存数据,所以执行前会触发将脏缓存数据写入磁盘操作。
注:
1、并行处理在OLTP类系统中慎用,使用不当会导致一个会话把主机资源全部占用,而正常事务得不到及时响应,所以一般只是用于数据仓库平台。
2、一般对于百万级记录以下的小表采用并行访问性能并不能提高,反而可能会让性能更差。
mysql数据库性能优化oracle数据库性能优化sql数据库性能优化数据库性能优化数据库性能优化方案
上一篇:mybatis的动态sql详解(精)下一篇:sql server 性能优化之nolock
猜你在找的MsSQL相关文章
SQL Server2012高可用之日志传送测试
(一)日志传送架构 (1.1)相关服务器 主服务器 :用于生产的服务器,上面运行这生产SQL ...
作者:前端之家 时间:2021-02-21
SQL server事物复制报错:要复制的 LOB 数据的长度(xxxxx)超出了配置的最大值 65536
(一)事故背景 最近在SQL Server 2012生产数据库上配置完事物复制(发布订阅)后,生产数据...
作者:前端之家 时间:2021-02-21
SQL Server2012高可用之事物复制(发布订阅)测试
(一)测试目的 目前公司使用的SQL SERVER 2012高可用环境为主备模式,其中主库可执行读写...
作者:前端之家 时间:2021-02-21
使用zabbix监控sql server的发布订阅
(一)背景个人在使用sql server时,用到了sql server的发布订阅来做主从同步,类似MySQL的...
作者:前端之家 时间:2021-02-21
SQL学习(四)集合运算
UNION和OR谓词 找出 product 和 product2 中售价高于 500 的商品的基本信息. select * fro...
作者:前端之家 时间:2021-01-12
SQL学习(五) 高级处理
5.1 请说出针对本章中使用的 product(商品)表执行如下 SELECT 语句所能得到的结果。 SEL...
作者:前端之家 时间:2021-01-12
SQL学习(一)初识数据库
datawhale组队学习SQL task01
作者:前端之家 时间:2021-01-12
SQL学习(二)基础查询与排序
datawhale数据库组队学习第二天打卡
作者:前端之家 时间:2021-01-12
SQL Server 2005 返回修改后的数据
今天在公司看到同事写了个SQL2005的新特性的文章,觉得很实用,在这里和大家分享下。原著作...
作者:前端之家 时间:2020-11-06
SQL Server 数据库最小宕机迁移方案
一、目的
在做SQL Server数据库维护的时候,当上司要求我们把几十G的数据文件搬动到其它服...
作者:前端之家 时间:2020-11-06
编程分类
MySQLMsSQLOracleSqlitePostgre SQLMariadbMongoDBNoSQLHBaseJDBC
最新文章
• SQL Server2012高可用之日
• SQL server事物复制报错:
• SQL Server2012高可用之事
• 使用zabbix监控sql server
• SQL学习(四)集合运算
• SQL学习(三) 复杂查询
• SQL学习(五) 高级处理
• SQL学习(一)初识数据库
• SQL学习(二)基础查询与排
• SQL Server 2005 返回修改
热门标签
更多 ►
undo日志persistent-cmysql-error-postal-codesql-match-almysql-5.6mysql-8.0database-tri安装路径系统错误data_dir丢失文件主从同步sql_mode数据库目录匿名用户character_seID归零数据库位置查询表重复字段查询字段截断日志SUSPECT7391Remote ServeLinked Serve玄学问题登录不上开启远程访问
最近更新· 小米手机重装系统价格多少?专业维修服务详解02-05
· 手把手教你重装电脑系统,让你的电脑焕然一新!02-05
· 教你一步步重装XP系统,让你的电脑重获新生02-05
· 从备份到上网:一步步教你重装电脑系统02-05
· Sony笔记本电脑一键重装系统详细图文教程02-05
· Lenovo笔记本重装系统超详细教程,小白也能轻松...02-05
· 联想笔记本一键重装Win10系统详细教程02-05
· 电脑系统故障无需愁,专业维修店帮你重装旧貌换新...02-05
· 联想笔记本一键重装Win10系统图文教程,小白也能...02-05
· 笔记本重装系统图文教程:从光盘启动一步到位02-05
好站推荐 菜鸟教程 编程之家 前端之家
商务合作
联系我们
Copyright © 2019 前端之家. 当前版本 V7.0.16
前端之家 版权所有
闽ICP备13020303号-10