图文详解Heap Sort堆排序算法及JavaScript的代码实现

前端之家收集整理的这篇文章主要介绍了图文详解Heap Sort堆排序算法及JavaScript的代码实现前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

1. 不得不说说二叉树

要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。 二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第 i 层至多有 2i - 1 个结点;深度为 k 的二叉树至多有 2k - 1 个结点;对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1。 树和二叉树的三个主要差别: 树的结点个数至少为 1,而二叉树的结点个数可以为 0 树中结点的最大度数没有限制,而二叉树结点的最大度数为 2 树的结点无左、右之分,而二叉树的结点有左、右之分 二叉树又分为完全二叉树(complete binary tree)和满二叉树(full binary tree) 满二叉树:一棵深度为 k,且有 2k - 1 个节点称之为满二叉树

(深度为 3 的满二叉树 full binary tree) 完全二叉树:深度为 k,有 n 个节点的二叉树,当且仅当其每一个节点都与深度为 k 的满二叉树中序号为 1 至 n 的节点对应时,称之为完全二叉树

(深度为 3 的完全二叉树 complete binary tree)

2. 什么是堆?

堆(二叉堆)可以视为一棵完全的二叉树,完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。 如下图,是一个堆和数组的相互关系

(堆和数组的相互关系) 对于给定的某个结点的下标 i,可以很容易的计算出这个结点的父结点、孩子结点的下标: Parent(i) = floor(i/2),i 的父节点下标 Left(i) = 2i,i 的左子节点下标 Right(i) = 2i + 1,i 的右子节点下标

二叉堆一般分为两种:最大堆和最小堆。 最大堆: 最大堆中的最大元素值出现在根结点(堆顶) 堆中每个父节点的元素值都大于等于其孩子结点(如果存在)

(最大堆) 最小堆: 最小堆中的最小元素值出现在根结点(堆顶) 堆中每个父节点的元素值都小于等于其孩子结点(如果存在)

(最小堆)

3. 堆排序原理

堆排序就是把最大堆堆顶的最大数取出,将剩余的堆继续调整为最大堆,再次将堆顶的最大数取出,这个过程持续到剩余数只有一个时结束。在堆中定义以下几种操作: 最大堆调整(Max-Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点 创建最大堆(Build-Max-Heap):将堆所有数据重新排序,使其成为最大堆 堆排序(Heap-Sort):移除位在第一个数据的根节点,并做最大堆调整的递归运算 继续进行下面的讨论前,需要注意的一个问题是:数组都是 Zero-Based,这就意味着我们的堆数据结构模型要发生改变

(Zero-Based) 相应的,几个计算公式也要作出相应调整: Parent(i) = floor((i-1)/2),i 的父节点下标 Left(i) = 2i + 1,i 的左子节点下标 Right(i) = 2(i + 1),i 的右子节点下标 最大堆调整(MAX‐HEAPIFY)的作用是保持最大堆的性质,是创建最大堆的核心子程序,作用过程如图所示:

(Max-Heapify) 由于一次调整后,堆仍然违反堆性质,所以需要递归的测试,使得整个堆都满足堆性质,用 JavaScript 可以表示如下:

if (iLeft < heapSize && array[index] < array[iLeft]) {
iMax = iLeft;
}

if (iRight < heapSize && array[iMax] < array[iRight]) {
iMax = iRight;
}

if (iMax != index) {
swap(array,iMax,index);
maxHeapify(array,heapSize); // 递归调整
}
}

function swap(array,i,j) {
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}

通常来说,递归主要用在分治法中,而这里并不需要分治。而且递归调用需要压栈/清栈,和迭代相比,性能上有略微的劣势。当然,按照20/80法则,这是可以忽略的。但是如果你觉得用递归会让自己心里过不去的话,也可以用迭代,比如下面这样:

if (iRight < heapSize && array[iMax] < array[iRight]) {
iMax = iRight;
}

if (iMax != index) {
swap(array,index);
index = iMax;
} else {
break;
}
}
}

function swap(array,j) {
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}

创建最大堆(Build-Max-Heap)的作用是将一个数组改造成一个最大堆,接受数组和堆大小两个参数,Build-Max-Heap 将自下而上的调用 Max-Heapify 来改造数组,建立最大堆。因为 Max-Heapify 能够保证下标 i 的结点之后结点都满足最大堆的性质,所以自下而上的调用 Max-Heapify 能够在改造过程中保持这一性质。如果最大堆的数量元素是 n,那么 Build-Max-Heap 从 Parent(n) 开始,往上依次调用 Max-Heapify。流程如下:

用 JavaScript 描述如下:

for (i = iParent; i >= 0; i--) {
maxHeapify(array,heapSize);
}
}

堆排序(Heap-Sort)是堆排序的接口算法,Heap-Sort先调用Build-Max-Heap将数组改造为最大堆,然后将堆顶和堆底元素交换,之后将底部上升,最后重新调用Max-Heapify保持最大堆性质。由于堆顶元素必然是堆中最大的元素,所以一次操作之后,堆中存在的最大元素被分离出堆,重复n-1次之后,数组排列完毕。整个流程如下:

用 JavaScript 描述如下:

buildMaxHeap(array,heapSize);

for (int i = heapSize - 1; i > 0; i--) {
swap(array,i);
maxHeapify(array,i);
}
}

4.JavaScript 语言实现

最后,把上面的整理为完整的 javascript 代码如下:

function swap(array,j) {
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}

function maxHeapify(array,heapSize) {
var iMax,iRight;
while (true) {
iMax = index;
iLeft = 2 index + 1;
iRight = 2
(index + 1);

if (iLeft < heapSize && array[index] < array[iLeft]) {
iMax = iLeft;
}

if (iRight < heapSize && array[iMax] < array[iRight]) {
iMax = iRight;
}

if (iMax != index) {
swap(array,index);
index = iMax;
} else {
break;
}
}
}

function buildMaxHeap(array) {
var i,iParent = Math.floor(array.length / 2) - 1;

for (i = iParent; i >= 0; i--) {
maxHeapify(array,array.length);
}
}

function sort(array) {
buildMaxHeap(array);

for (var i = array.length - 1; i > 0; i--) {
swap(array,i);
maxHeapify(array,i);
}
return array;
}

return sort(array);
}

5.堆排序算法的运用

(1)算法性能/复杂度

堆排序的时间复杂度非常稳定(我们可以看到,对输入数据不敏感),为O(n㏒n)复杂度,最好情况与最坏情况一样。 但是,其空间复杂度依实现不同而不同。上面即讨论了两种常见的复杂度:O(n)与O(1)。本着节约空间的原则,我推荐O(1)复杂度的方法

(2)算法稳定性

堆排序存在大量的筛选和移动过程,属于不稳定的排序算法。

(3)算法适用场景

堆排序在建立堆和调整堆的过程中会产生比较大的开销,在元素少的时候并不适用。但是,在元素比较多的情况下,还是不错的一个选择。尤其是在解决诸如“前n大的数”一类问题时,几乎是首选算法。

猜你在找的JavaScript相关文章