javascript – 重新创建CSS3过渡Cubic-Bezier曲线

前端之家收集整理的这篇文章主要介绍了javascript – 重新创建CSS3过渡Cubic-Bezier曲线前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
CSS3过渡中,您可以将定时函数指定为’cubic-bezier:(0.25,0.3,0.8,1.0)’
在该字符串中,您只是为曲线上的点P1和P2指定XY,因为P0和P3分别始终为(0.0,0.0)和(1.0,1.0).

根据Apple的网站:
x [表示]为总持续时间的一部分,y表示为总变化的一部分

我的问题是如何在javascript中将其映射回传统的1维T值?

From Apple docs on animating with transitions

解决方法

稍微浏览webkit-source,以下代码将为CSS3转换中使用的隐式曲线提供正确的T值:

Visual demo (codepen.io)

希望这有助于某人!

function loop(){
    var t = (now - animationStartTime) / ( animationDuration*1000 );

    var curve = new UnitBezier(Bx,By,Cx,Cy);
    var t1 = curve.solve(t,UnitBezier.prototype.epsilon);
    var s1 = 1.0-t1;

    // Lerp using solved T
    var finalPosition.x = (startPosition.x * s1) + (endPosition.x * t1);
    var finalPosition.y = (startPosition.y * s1) + (endPosition.y * t1);
}


/**
* Solver for cubic bezier curve with implicit control points at (0,0) and (1.0,1.0)
*/
function UnitBezier(p1x,p1y,p2x,p2y) {
    // pre-calculate the polynomial coefficients
    // First and last control points are implied to be (0,1.0)
    this.cx = 3.0 * p1x;
    this.bx = 3.0 * (p2x - p1x) - this.cx;
    this.ax = 1.0 - this.cx -this.bx;

    this.cy = 3.0 * p1y;
    this.by = 3.0 * (p2y - p1y) - this.cy;
    this.ay = 1.0 - this.cy - this.by;
}

UnitBezier.prototype.epsilon = 1e-6; // Precision  
UnitBezier.prototype.sampleCurveX = function(t) {
    return ((this.ax * t + this.bx) * t + this.cx) * t;
}
UnitBezier.prototype.sampleCurveY = function (t) {
    return ((this.ay * t + this.by) * t + this.cy) * t;
}
UnitBezier.prototype.sampleCurveDerivativeX = function (t) {
    return (3.0 * this.ax * t + 2.0 * this.bx) * t + this.cx;
}


UnitBezier.prototype.solveCurveX = function (x,epsilon) {
    var t0; 
    var t1;
    var t2;
    var x2;
    var d2;
    var i;

    // First try a few iterations of Newton's method -- normally very fast.
    for (t2 = x,i = 0; i < 8; i++) {
        x2 = this.sampleCurveX(t2) - x;
        if (Math.abs (x2) < epsilon)
            return t2;
        d2 = this.sampleCurveDerivativeX(t2);
        if (Math.abs(d2) < epsilon)
            break;
        t2 = t2 - x2 / d2;
    }

    // No solution found - use bi-section
    t0 = 0.0;
    t1 = 1.0;
    t2 = x;

    if (t2 < t0) return t0;
    if (t2 > t1) return t1;

    while (t0 < t1) {
        x2 = this.sampleCurveX(t2);
        if (Math.abs(x2 - x) < epsilon)
            return t2;
        if (x > x2) t0 = t2;
        else t1 = t2;

        t2 = (t1 - t0) * .5 + t0;
    }

    // Give up
    return t2;
}

// Find new T as a function of Y along curve X
UnitBezier.prototype.solve = function (x,epsilon) {
    return this.sampleCurveY( this.solveCurveX(x,epsilon) );
}

猜你在找的JavaScript相关文章