javascript – Knex与PostgreSQL选择查询在多个并行请求上性能退化极差

前端之家收集整理的这篇文章主要介绍了javascript – Knex与PostgreSQL选择查询在多个并行请求上性能退化极差前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
简单来说

我正在开发一个游戏(梦想),我的后端堆栈是具有Knex的Node.js和Postgresql(9.6).我在这里持有所有玩家的数据,我需要频繁请求.
其中一个请求需要进行10个简单的选择,这将提取数据,这是问题开始的地方:这些查询速度相当快(〜1ms),如果服务器只同时提供1个请求.但是如果服务器服务器多个并行请求(100-400),则查询执行时间会非常恶化(每个查询最多可能需要几秒钟)

细节

为了更客观,我将描述服务器的请求目标,选择查询和我收到的结果.

关于系统

我在数字海洋上运行节点代码4cpu / 8gb的液滴和Postgres在同一个conf(2个不同的液滴,相同的配置)

关于请求

它需要做一些游戏操作,他从DB中选择2名玩家的数据

DDL

玩家数据由5个表表示:

  1. CREATE TABLE public.player_profile(
  2. id integer NOT NULL DEFAULT nextval('player_profile_id_seq'::regclass),public_data integer NOT NULL,private_data integer NOT NULL,current_active_deck_num smallint NOT NULL DEFAULT '0'::smallint,created_at bigint NOT NULL DEFAULT '0'::bigint,CONSTRAINT player_profile_pkey PRIMARY KEY (id),CONSTRAINT player_profile_private_data_foreign FOREIGN KEY (private_data)
  3. REFERENCES public.profile_private_data (id) MATCH SIMPLE
  4. ON UPDATE NO ACTION
  5. ON DELETE NO ACTION,CONSTRAINT player_profile_public_data_foreign FOREIGN KEY (public_data)
  6. REFERENCES public.profile_public_data (id) MATCH SIMPLE
  7. ON UPDATE NO ACTION
  8. ON DELETE NO ACTION
  9. );
  10.  
  11. CREATE TABLE public.player_character_data(
  12. id integer NOT NULL DEFAULT nextval('player_character_data_id_seq'::regclass),owner_player integer NOT NULL,character_id integer NOT NULL,experience_counter integer NOT NULL,level_counter integer NOT NULL,character_name character varying(255) COLLATE pg_catalog."default" NOT NULL,CONSTRAINT player_character_data_pkey PRIMARY KEY (id),CONSTRAINT player_character_data_owner_player_foreign FOREIGN KEY (owner_player)
  13. REFERENCES public.player_profile (id) MATCH SIMPLE
  14. ON UPDATE NO ACTION
  15. ON DELETE NO ACTION
  16. );
  17.  
  18. CREATE TABLE public.player_cards(
  19. id integer NOT NULL DEFAULT nextval('player_cards_id_seq'::regclass),card_id integer NOT NULL,card_level integer NOT NULL,first_deck boolean NOT NULL,consumables integer NOT NULL,second_deck boolean NOT NULL DEFAULT false,third_deck boolean NOT NULL DEFAULT false,quality character varying(10) COLLATE pg_catalog."default" NOT NULL DEFAULT 'none'::character varying,CONSTRAINT player_cards_pkey PRIMARY KEY (id),CONSTRAINT player_cards_owner_player_foreign FOREIGN KEY (owner_player)
  20. REFERENCES public.player_profile (id) MATCH SIMPLE
  21. ON UPDATE NO ACTION
  22. ON DELETE NO ACTION
  23. );
  24.  
  25. CREATE TABLE public.player_character_equipment(
  26. id integer NOT NULL DEFAULT nextval('player_character_equipment_id_seq'::regclass),owner_character integer NOT NULL,item_id integer NOT NULL,item_level integer NOT NULL,item_type character varying(20) COLLATE pg_catalog."default" NOT NULL,is_equipped boolean NOT NULL,slot_num integer,CONSTRAINT player_character_equipment_pkey PRIMARY KEY (id),CONSTRAINT player_character_equipment_owner_character_foreign FOREIGN KEY (owner_character)
  27. REFERENCES public.player_character_data (id) MATCH SIMPLE
  28. ON UPDATE NO ACTION
  29. ON DELETE NO ACTION
  30. );
  31.  
  32. CREATE TABLE public.player_character_runes(
  33. id integer NOT NULL DEFAULT nextval('player_character_runes_id_seq'::regclass),decay_start_timestamp bigint,CONSTRAINT player_character_runes_pkey PRIMARY KEY (id),CONSTRAINT player_character_runes_owner_character_foreign FOREIGN KEY (owner_character)
  34. REFERENCES public.player_character_data (id) MATCH SIMPLE
  35. ON UPDATE NO ACTION
  36. ON DELETE NO ACTION
  37. );

带索引

  1. knex.raw('create index "player_cards_owner_player_first_deck_index" on "player_cards"("owner_player") WHERE first_deck = TRUE');
  2. knex.raw('create index "player_cards_owner_player_second_deck_index" on "player_cards"("owner_player") WHERE second_deck = TRUE');
  3. knex.raw('create index "player_cards_owner_player_third_deck_index" on "player_cards"("owner_player") WHERE third_deck = TRUE');
  4. knex.raw('create index "player_character_equipment_owner_character_is_equipped_index" on "player_character_equipment" ("owner_character") WHERE is_equipped = TRUE');
  5. knex.raw('create index "player_character_runes_owner_character_slot_num_not_null_index" on "player_character_runes" ("owner_character") WHERE slot_num IS NOT NULL');

代码

第一次查询

  1. async.parallel([
  2. cb => tx('player_character_data')
  3. .select('character_id','id')
  4. .where('owner_player',playerId)
  5. .limit(1)
  6. .asCallback(cb),cb => tx('player_character_data')
  7. .select('character_id',enemyId)
  8. .limit(1)
  9. .asCallback(cb)
  10. ],callbackFn);

第二个查询

  1. async.parallel([
  2. cb => tx('player_profile')
  3. .select('current_active_deck_num')
  4. .where('id',playerId)
  5. .asCallback(cb),cb => tx('player_profile')
  6. .select('current_active_deck_num')
  7. .where('id',enemyId)
  8. .asCallback(cb)
  9. ],callbackFn);

三,

  1. playerQ = { first_deck: true }
  2. enemyQ = { first_deck: true }
  3. MAX_CARDS_IN_DECK = 5
  4. async.parallel([
  5. cb => tx('player_cards')
  6. .select('card_id','card_level')
  7. .where('owner_player',playerId)
  8. .andWhere(playerQ)
  9. .limit(MAX_CARDS_IN_DECK)
  10. .asCallback(cb),cb => tx('player_cards')
  11. .select('card_id',enemyId)
  12. .andWhere(enemyQ)
  13. .limit(MAX_CARDS_IN_DECK)
  14. .asCallback(cb)
  15. ],callbackFn);

第四个q

  1. MAX_EQUIPPED_ITEMS = 3
  2. async.parallel([
  3. cb => tx('player_character_equipment')
  4. .select('item_id','item_level')
  5. .where('owner_character',playerCharacterUniqueId)
  6. .andWhere('is_equipped',true)
  7. .limit(MAX_EQUIPPED_ITEMS)
  8. .asCallback(cb),cb => tx('player_character_equipment')
  9. .select('item_id',enemyCharacterUniqueId)
  10. .andWhere('is_equipped',true)
  11. .limit(MAX_EQUIPPED_ITEMS)
  12. .asCallback(cb)
  13. ],callbackFn);

第五个

  1. runeSlotsMax = 3
  2. async.parallel([
  3. cb => tx('player_character_runes')
  4. .select('item_id','decay_start_timestamp')
  5. .where('owner_character',playerCharacterUniqueId)
  6. .whereNotNull('slot_num')
  7. .limit(runeSlotsMax)
  8. .asCallback(cb),cb => tx('player_character_runes')
  9. .select('item_id',enemyCharacterUniqueId)
  10. .whereNotNull('slot_num')
  11. .limit(runeSlotsMax)
  12. .asCallback(cb)
  13. ],callbackFn);

EXPLAIN(分析)

只有索引扫描和< 1ms规划和执行时间.如果需要可以发布(没有发布以节省空间) 时间本身 (总数为请求数,最小/最大/平均/中位数为响应时间)
> 4并发请求:{“total”:300,“avg”:1.81,“median”:2,“min”:1,“max”:6}
> 400个并发请求:

> {“total”:300,“avg”:209.57666666666665,“median”:176,“min”:9,“max”:1683} – 首先选择
> {“total”:300,“avg”:2105.9,“median”:2005,“min”:1563,“max”:4074} – 最后选择

我试图将执行超过100ms的缓慢查询放入日志中 – 没有.还试图将连接池大小增加到并行请求的数量 – 也没有.

解决方法

我可以看到三个潜在的问题:

> 400个并发请求实际上是相当多的,你的机器规格是没有什么可以兴奋的.也许这更与我的MSsql背景有关,但我想象这是一个可能需要加强硬件的情况.
>两台服务器之间的通信应该很快,但可能会占用您所看到的一些延迟.一个强大的服务器可能是一个更好的解决方案.
>我假设你有合理的数据量(400个并发连接应该有很多存储).也许发布一些实际生成sql可能是有用的.很多都取决于sql Knex的出现,并且可能会有可用的优化.可以想到索引,但是肯定会看到sql.

您的测试似乎不包括客户端的网络延迟,因此这可能是您尚未考虑的其他问题.

猜你在找的JavaScript相关文章