Pandas分组与聚合
分组 (groupby)
- 对数据集进行分组,然后对每组进行统计分析
- sql能够对数据进行过滤,分组聚合
- pandas能利用groupby进行更加复杂的分组运算
-
分组运算过程:split->apply->combine
- 拆分:进行分组的根据
2.应用:每个分组运行的计算规则
3.合并:把每个分组的计算结果合并起来
示例代码:
import pandas as pd import numpy as np dict_obj = {‘key1‘ : [‘a‘,‘b‘,‘a‘,‘a‘],‘key2‘ : [‘one‘,‘one‘,‘two‘,‘three‘,‘three‘],‘data1‘: np.random.randn(8),‘data2‘: np.random.randn(8)} df_obj = pd.DataFrame(dict_obj) print(df_obj)
运行结果:
data1 data2 key1 key2 0 0.974685 -0.672494 a one 1 -0.214324 0.758372 b one 2 1.508838 0.392787 a two 3 0.522911 0.630814 b three 4 1.347359 -0.177858 a two 5 -0.264616 1.017155 b two 6 -0.624708 0.450885 a one 7 -1.019229 -1.143825 a three
一、GroupBy对象:DataFrameGroupBy,SeriesGroupBy
1. 分组操作
groupby()进行分组,GroupBy对象没有进行实际运算,只是包含分组的中间数据
按列名分组:obj.groupby(‘label’)
示例代码:
# dataframe根据key1进行分组 print(type(df_obj.groupby(‘key1‘))) # dataframe的 data1 列根据 key1 进行分组 print(type(df_obj[‘data1‘].groupby(df_obj[‘key1‘])))
运行结果:
<class ‘pandas.core.groupby.DataFrameGroupBy‘> <class ‘pandas.core.groupby.SeriesGroupBy‘>
2. 分组运算
对GroupBy对象进行分组运算/多重分组运算,如mean()
非数值数据不进行分组运算
示例代码:
# 分组运算 grouped1 = df_obj.groupby(‘key1‘) print(grouped1.mean()) grouped2 = df_obj[‘data1‘].groupby(df_obj[‘key1‘]) print(grouped2.mean())
运行结果:
data1 data2 key1 a 0.437389 -0.230101 b 0.014657 0.802114 key1 a 0.437389 b 0.014657 Name: data1,dtype: float64
size() 返回每个分组的元素个数
示例代码:
# size print(grouped1.size()) print(grouped2.size())
运行结果:
key1 a 5 b 3 dtype: int64 key1 a 5 b 3 dtype: int64
3. 按自定义的key分组
obj.groupby(self_def_key)
自定义的key可为列表或多层列表
obj.groupby([‘label1’,‘label2’])->多层dataframe
示例代码:
# 按自定义key分组,列表 self_def_key = [0,1,2,3,4,5,7] print(df_obj.groupby(self_def_key).size()) # 按自定义key分组,多层列表 print(df_obj.groupby([df_obj[‘key1‘],df_obj[‘key2‘]]).size()) # 按多个列多层分组 grouped2 = df_obj.groupby([‘key1‘,‘key2‘]) print(grouped2.size()) # 多层分组按key的顺序进行 grouped3 = df_obj.groupby([‘key2‘,‘key1‘]) print(grouped3.mean()) # unstack可以将多层索引的结果转换成单层的dataframe print(grouped3.mean().unstack())
运行结果:
0 1 1 1 2 1 3 2 4 1 5 1 7 1 dtype: int64 key1 key2 a one 2 three 1 two 2 b one 1 three 1 two 1 dtype: int64 key1 key2 a one 2 three 1 two 2 b one 1 three 1 two 1 dtype: int64 data1 data2 key2 key1 one a 0.174988 -0.110804 b -0.214324 0.758372 three a -1.019229 -1.143825 b 0.522911 0.630814 two a 1.428099 0.107465 b -0.264616 1.017155 data1 data2 key1 a b a b key2 one 0.174988 -0.214324 -0.110804 0.758372 three -1.019229 0.522911 -1.143825 0.630814 two 1.428099 -0.264616 0.107465 1.017155
二、GroupBy对象支持迭代操作
每次迭代返回一个元组 (group_name,group_data)
可用于分组数据的具体运算
1. 单层分组
示例代码:
# 单层分组,根据key1 for group_name,group_data in grouped1: print(group_name) print(group_data)
运行结果:
a data1 data2 key1 key2 0 0.974685 -0.672494 a one 2 1.508838 0.392787 a two 4 1.347359 -0.177858 a two 6 -0.624708 0.450885 a one 7 -1.019229 -1.143825 a three b data1 data2 key1 key2 1 -0.214324 0.758372 b one 3 0.522911 0.630814 b three 5 -0.264616 1.017155 b two
2. 多层分组
示例代码:
# 多层分组,根据key1 和 key2 for group_name,group_data in grouped2: print(group_name) print(group_data)
运行结果:
(‘a‘,‘one‘) data1 data2 key1 key2 0 0.974685 -0.672494 a one 6 -0.624708 0.450885 a one (‘a‘,‘three‘) data1 data2 key1 key2 7 -1.019229 -1.143825 a three (‘a‘,‘two‘) data1 data2 key1 key2 2 1.508838 0.392787 a two 4 1.347359 -0.177858 a two (‘b‘,‘one‘) data1 data2 key1 key2 1 -0.214324 0.758372 b one (‘b‘,‘three‘) data1 data2 key1 key2 3 0.522911 0.630814 b three (‘b‘,‘two‘) data1 data2 key1 key2 5 -0.264616 1.017155 b two
三、GroupBy对象可以转换成列表或字典
示例代码:
# GroupBy对象转换list print(list(grouped1)) # GroupBy对象转换dict print(dict(list(grouped1)))
运行结果:
[(‘a‘,data1 data2 key1 key2 0 0.974685 -0.672494 a one 2 1.508838 0.392787 a two 4 1.347359 -0.177858 a two 6 -0.624708 0.450885 a one 7 -1.019229 -1.143825 a three),(‘b‘,data1 data2 key1 key2 1 -0.214324 0.758372 b one 3 0.522911 0.630814 b three 5 -0.264616 1.017155 b two)] {‘a‘: data1 data2 key1 key2 0 0.974685 -0.672494 a one 2 1.508838 0.392787 a two 4 1.347359 -0.177858 a two 6 -0.624708 0.450885 a one 7 -1.019229 -1.143825 a three,‘b‘: data1 data2 key1 key2 1 -0.214324 0.758372 b one 3 0.522911 0.630814 b three 5 -0.264616 1.017155 b two}
1. 按列分组、按数据类型分组
示例代码:
# 按列分组 print(df_obj.dtypes) # 按数据类型分组 print(df_obj.groupby(df_obj.dtypes,axis=1).size()) print(df_obj.groupby(df_obj.dtypes,axis=1).sum())
运行结果:
data1 float64 data2 float64 key1 object key2 object dtype: object float64 2 object 2 dtype: int64 float64 object 0 0.302191 a one 1 0.544048 b one 2 1.901626 a two 3 1.153725 b three 4 1.169501 a two 5 0.752539 b two 6 -0.173823 a one 7 -2.163054 a three
2. 其他分组方法
示例代码:
df_obj2 = pd.DataFrame(np.random.randint(1,10,(5,5)),columns=[‘a‘,‘c‘,‘d‘,‘e‘],index=[‘A‘,‘B‘,‘C‘,‘D‘,‘E‘]) df_obj2.ix[1,1:4] = np.NaN print(df_obj2)
运行结果:
a b c d e A 7 2.0 4.0 5.0 8 B 4 NaN NaN NaN 1 C 3 2.0 5.0 4.0 6 D 3 1.0 9.0 7.0 3 E 6 1.0 6.0 8.0 1
3. 通过字典分组
示例代码:
# 通过字典分组 mapping_dict = {‘a‘:‘Python‘,‘b‘:‘Python‘,‘c‘:‘Java‘,‘d‘:‘C‘,‘e‘:‘Java‘} print(df_obj2.groupby(mapping_dict,axis=1).size()) print(df_obj2.groupby(mapping_dict,axis=1).count()) # 非NaN的个数 print(df_obj2.groupby(mapping_dict,axis=1).sum())
运行结果:
C 1 Java 2 Python 2 dtype: int64 C Java Python A 1 2 2 B 0 1 1 C 1 2 2 D 1 2 2 E 1 2 2 C Java Python A 5.0 12.0 9.0 B NaN 1.0 4.0 C 4.0 11.0 5.0 D 7.0 12.0 4.0 E 8.0 7.0 7.0
4. 通过函数分组,函数传入的参数为行索引或列索引
示例代码:
# 通过函数分组 df_obj3 = pd.DataFrame(np.random.randint(1,index=[‘AA‘,‘BBB‘,‘CC‘,‘EE‘]) #df_obj3 def group_key(idx): """ idx 为列索引或行索引 """ #return idx return len(idx) print(df_obj3.groupby(group_key).size()) # 以上自定义函数等价于 #df_obj3.groupby(len).size()
运行结果:
1 1 2 3 3 1 dtype: int64
5. 通过索引级别分组
示例代码:
# 通过索引级别分组 columns = pd.MultiIndex.from_arrays([[‘Python‘,‘Java‘,‘Python‘,‘Python‘],[‘A‘,‘A‘,‘B‘]],names=[‘language‘,‘index‘]) df_obj4 = pd.DataFrame(np.random.randint(1,columns=columns) print(df_obj4) # 根据language进行分组 print(df_obj4.groupby(level=‘language‘,axis=1).sum()) # 根据index进行分组 print(df_obj4.groupby(level=‘index‘,axis=1).sum())
运行结果:
language Python Java Python Java Python index A A B C B 0 2 7 8 4 3 1 5 2 6 1 2 2 6 4 4 5 2 3 4 7 4 3 1 4 7 4 3 4 8 language Java Python 0 11 13 1 3 13 2 9 12 3 10 9 4 8 18 index A B C 0 9 11 4 1 7 8 1 2 10 6 5 3 11 5 3 4 11 11 4
聚合 (aggregation)
- 数组产生标量的过程,如mean()、count()等
- 常用于对分组后的数据进行计算
示例代码:
dict_obj = {‘key1‘ : [‘a‘,‘data1‘: np.random.randint(1,8),‘data2‘: np.random.randint(1,8)} df_obj5 = pd.DataFrame(dict_obj) print(df_obj5)
运行结果:
data1 data2 key1 key2 0 3 7 a one 1 1 5 b one 2 7 4 a two 3 2 4 b three 4 6 4 a two 5 9 9 b two 6 3 5 a one 7 8 4 a three
1. 内置的聚合函数
sum(),mean(),max(),min(),count(),size(),describe()
示例代码:
print(df_obj5.groupby(‘key1‘).sum()) print(df_obj5.groupby(‘key1‘).max()) print(df_obj5.groupby(‘key1‘).min()) print(df_obj5.groupby(‘key1‘).mean()) print(df_obj5.groupby(‘key1‘).size()) print(df_obj5.groupby(‘key1‘).count()) print(df_obj5.groupby(‘key1‘).describe())
运行结果:
data1 data2 key1 a 27 24 b 12 18 data1 data2 key2 key1 a 8 7 two b 9 9 two data1 data2 key2 key1 a 3 4 one b 1 4 one data1 data2 key1 a 5.4 4.8 b 4.0 6.0 key1 a 5 b 3 dtype: int64 data1 data2 key2 key1 a 5 5 5 b 3 3 3 data1 data2 key1 a count 5.000000 5.000000 mean 5.400000 4.800000 std 2.302173 1.303840 min 3.000000 4.000000 25% 3.000000 4.000000 50% 6.000000 4.000000 75% 7.000000 5.000000 max 8.000000 7.000000 b count 3.000000 3.000000 mean 4.000000 6.000000 std 4.358899 2.645751 min 1.000000 4.000000 25% 1.500000 4.500000 50% 2.000000 5.000000 75% 5.500000 7.000000 max 9.000000 9.000000
2. 可自定义函数,传入agg方法中
grouped.agg(func)
func的参数为groupby索引对应的记录
示例代码:
# 自定义聚合函数 def peak_range(df): """ 返回数值范围 """ #print type(df) #参数为索引所对应的记录 return df.max() - df.min() print(df_obj5.groupby(‘key1‘).agg(peak_range)) print(df_obj.groupby(‘key1‘).agg(lambda df : df.max() - df.min()))
运行结果:
data1 data2 key1 a 5 3 b 8 5 data1 data2 key1 a 2.528067 1.594711 b 0.787527 0.386341 In [25]:
3. 应用多个聚合函数
同时应用多个函数进行聚合操作,使用函数列表
示例代码:
# 应用多个聚合函数 # 同时应用多个聚合函数 print(df_obj.groupby(‘key1‘).agg([‘mean‘,‘std‘,‘count‘,peak_range])) # 默认列名为函数名 print(df_obj.groupby(‘key1‘).agg([‘mean‘,(‘range‘,peak_range)])) # 通过元组提供新的列名
运行结果:
data1 data2 mean std count peak_range mean std count peak_range key1 a 0.437389 1.174151 5 2.528067 -0.230101 0.686488 5 1.594711 b 0.014657 0.440878 3 0.787527 0.802114 0.196850 3 0.386341 data1 data2 mean std count range mean std count range key1 a 0.437389 1.174151 5 2.528067 -0.230101 0.686488 5 1.594711 b 0.014657 0.440878 3 0.787527 0.802114 0.196850 3 0.386341
4. 对不同的列分别作用不同的聚合函数,使用dict
示例代码:
# 每列作用不同的聚合函数 dict_mapping = {‘data1‘:‘mean‘,‘data2‘:‘sum‘} print(df_obj.groupby(‘key1‘).agg(dict_mapping)) dict_mapping = {‘data1‘:[‘mean‘,‘max‘],‘data2‘:‘sum‘} print(df_obj.groupby(‘key1‘).agg(dict_mapping))
运行结果:
data1 data2 key1 a 0.437389 -1.150505 b 0.014657 2.406341 data1 data2 mean max sum key1 a 0.437389 1.508838 -1.150505 b 0.014657 0.522911 2.406341
5. 常用的内置聚合函数
###
函数名 说明
count: 分组种非NA值的数量
sum: 非NA值的和
mean: 非NA值的平均值
median: 非NA值的算术中位数
std、var: 无偏(分母为n-1)标准差和方差
min、max: 非NA值的最小值和最大值
prod: 非NA值的积
first、last: 第一个和最后一个非NA值
数据的分组运算
示例代码:
import pandas as pd import numpy as np dict_obj = {‘key1‘ : [‘a‘,8)} df_obj = pd.DataFrame(dict_obj) print(df_obj) # 按key1分组后,计算data1,data2的统计信息并附加到原始表格中,并添加表头前缀 k1_sum = df_obj.groupby(‘key1‘).sum().add_prefix(‘sum_‘) print(k1_sum)
运行结果:
data1 data2 key1 key2 0 5 1 a one 1 7 8 b one 2 1 9 a two 3 2 6 b three 4 9 8 a two 5 8 3 b two 6 3 5 a one 7 8 3 a three sum_data1 sum_data2 key1 a 26 26 b 17 17
聚合运算后会改变原始数据的形状,
如何保持原始数据的形状?
1. merge
使用merge的外连接,比较复杂
示例代码:
# 方法1,使用merge k1_sum_merge = pd.merge(df_obj,k1_sum,left_on=‘key1‘,right_index=True) print(k1_sum_merge)
运行结果:
data1 data2 key1 key2 sum_data1 sum_data2 0 5 1 a one 26 26 2 1 9 a two 26 26 4 9 8 a two 26 26 6 3 5 a one 26 26 7 8 3 a three 26 26 1 7 8 b one 17 17 3 2 6 b three 17 17 5 8 3 b two 17 17
2. transform
transform的计算结果和原始数据的形状保持一致,
如:grouped.transform(np.sum)
示例代码:
# 方法2,使用transform k1_sum_tf = df_obj.groupby(‘key1‘).transform(np.sum).add_prefix(‘sum_‘) df_obj[k1_sum_tf.columns] = k1_sum_tf print(df_obj)
运行结果:
data1 data2 key1 key2 sum_data1 sum_data2 sum_key2 0 5 1 a one 26 26 onetwotwoonethree 1 7 8 b one 17 17 onethreetwo 2 1 9 a two 26 26 onetwotwoonethree 3 2 6 b three 17 17 onethreetwo 4 9 8 a two 26 26 onetwotwoonethree 5 8 3 b two 17 17 onethreetwo 6 3 5 a one 26 26 onetwotwoonethree 7 8 3 a three 26 26 onetwotwoonethree
也可传入自定义函数,
示例代码:
# 自定义函数传入transform def diff_mean(s): """ 返回数据与均值的差值 """ return s - s.mean() print(df_obj.groupby(‘key1‘).transform(diff_mean))
运行结果:
data1 data2 sum_data1 sum_data2 0 -0.200000 -4.200000 0 0 1 1.333333 2.333333 0 0 2 -4.200000 3.800000 0 0 3 -3.666667 0.333333 0 0 4 3.800000 2.800000 0 0 5 2.333333 -2.666667 0 0 6 -2.200000 -0.200000 0 0 7 2.800000 -2.200000 0 0
groupby.apply(func)
示例代码:
import pandas as pd import numpy as np dataset_path = ‘./starcraft.csv‘ df_data = pd.read_csv(dataset_path,usecols=[‘LeagueIndex‘,‘Age‘,‘HoursPerWeek‘,‘TotalHours‘,‘APM‘]) def top_n(df,n=3,column=‘APM‘): """ 返回每个分组按 column 的 top n 数据 """ return df.sort_values(by=column,ascending=False)[:n] print(df_data.groupby(‘LeagueIndex‘).apply(top_n))
运行结果:
LeagueIndex Age HoursPerWeek TotalHours APM LeagueIndex 1 2214 1 20.0 12.0 730.0 172.9530 2246 1 27.0 8.0 250.0 141.6282 1753 1 20.0 28.0 100.0 139.6362 2 3062 2 20.0 6.0 100.0 179.6250 3229 2 16.0 24.0 110.0 156.7380 1520 2 29.0 6.0 250.0 151.6470 3 1557 3 22.0 6.0 200.0 226.6554 484 3 19.0 42.0 450.0 220.0692 2883 3 16.0 8.0 800.0 208.9500 4 2688 4 26.0 24.0 990.0 249.0210 1759 4 16.0 6.0 75.0 229.9122 2637 4 23.0 24.0 650.0 227.2272 5 3277 5 18.0 16.0 950.0 372.6426 93 5 17.0 36.0 720.0 335.4990 202 5 37.0 14.0 800.0 327.7218 6 734 6 16.0 28.0 730.0 389.8314 2746 6 16.0 28.0 4000.0 350.4114 1810 6 21.0 14.0 730.0 323.2506 7 3127 7 23.0 42.0 2000.0 298.7952 104 7 21.0 24.0 1000.0 286.4538 1654 7 18.0 98.0 700.0 236.0316 8 3393 8 NaN NaN NaN 375.8664 3373 8 NaN NaN NaN 364.8504 3372 8 NaN NaN NaN 355.3518
1. 产生层级索引:外层索引是分组名,内层索引是df_obj的行索引
示例代码:
# apply函数接收的参数会传入自定义的函数中 print(df_data.groupby(‘LeagueIndex‘).apply(top_n,n=2,column=‘Age‘))
运行结果:
LeagueIndex Age HoursPerWeek TotalHours APM LeagueIndex 1 3146 1 40.0 12.0 150.0 38.5590 3040 1 39.0 10.0 500.0 29.8764 2 920 2 43.0 10.0 730.0 86.0586 2437 2 41.0 4.0 200.0 54.2166 3 1258 3 41.0 14.0 800.0 77.6472 2972 3 40.0 10.0 500.0 60.5970 4 1696 4 44.0 6.0 500.0 89.5266 1729 4 39.0 8.0 500.0 86.7246 5 202 5 37.0 14.0 800.0 327.7218 2745 5 37.0 18.0 1000.0 123.4098 6 3069 6 31.0 8.0 800.0 133.1790 2706 6 31.0 8.0 700.0 66.9918 7 2813 7 26.0 36.0 1300.0 188.5512 1992 7 26.0 24.0 1000.0 219.6690 8 3340 8 NaN NaN NaN 189.7404 3341 8 NaN NaN NaN 287.8128
2. 禁止层级索引,group_keys=False
示例代码:
print(df_data.groupby(‘LeagueIndex‘,group_keys=False).apply(top_n))
运行结果:
LeagueIndex Age HoursPerWeek TotalHours APM 2214 1 20.0 12.0 730.0 172.9530 2246 1 27.0 8.0 250.0 141.6282 1753 1 20.0 28.0 100.0 139.6362 3062 2 20.0 6.0 100.0 179.6250 3229 2 16.0 24.0 110.0 156.7380 1520 2 29.0 6.0 250.0 151.6470 1557 3 22.0 6.0 200.0 226.6554 484 3 19.0 42.0 450.0 220.0692 2883 3 16.0 8.0 800.0 208.9500 2688 4 26.0 24.0 990.0 249.0210 1759 4 16.0 6.0 75.0 229.9122 2637 4 23.0 24.0 650.0 227.2272 3277 5 18.0 16.0 950.0 372.6426 93 5 17.0 36.0 720.0 335.4990 202 5 37.0 14.0 800.0 327.7218 734 6 16.0 28.0 730.0 389.8314 2746 6 16.0 28.0 4000.0 350.4114 1810 6 21.0 14.0 730.0 323.2506 3127 7 23.0 42.0 2000.0 298.7952 104 7 21.0 24.0 1000.0 286.4538 1654 7 18.0 98.0 700.0 236.0316 3393 8 NaN NaN NaN 375.8664 3373 8 NaN NaN NaN 364.8504 3372 8 NaN NaN NaN 355.3518
apply可以用来处理不同分组内的缺失数据填充,填充该分组的均值。