基于DDD以及事件驱动架构(EDA)的应用开发框架enode

前端之家收集整理的这篇文章主要介绍了基于DDD以及事件驱动架构(EDA)的应用开发框架enode前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

前言

今天是个开心的日子,又是周末,可以安心轻松的写写文章了。经过了大概3年的DDD理论积累,以及去年年初的第一个版本的event sourcing框架的开发以及项目实践经验,再通过今年上半年利用业余时间的设计与开发,我的enode框架终于可以和大家见面了。

自从Eric Evan提出DDD领域驱动设计以来已经过了很多年了,现在已经有很多人在学习或实践DDD。但是我发现目前能够支持DDD开发的框架还不多,至少在国内还不多。据我所知道的java和.net平台,国外比较有名的有:基于java平台的是axon framework,该框架很活跃,作者也很勤奋,该框架已经在一些实际商业项目中使用了,算比较成功;基于.net平台的是ncqrs,该框架早起比较活跃,但现在没有发展了,因为几乎没人在维护,让人很失望;国内有:banq的jdon framework可以支持DDD+CQRS+EventSourcing的开发,但是它是基于java平台的,所以对于.net平台的人,没什么实际用处;.net平台,开源的主要就是园子里的晴阳兄开发的apworks框架。晴阳兄在DDD方面,在国内的贡献很大,写了很多DDD系列的文章,框架和案例并行,很不错。当然,我所关注的紧紧是c#和java语言的框架,基于scala等其他语言实现的框架也有很多,这里就不一一例举了。

上面这么多框架都有各自的特点和优势,这里就不多做评价了,大家有兴趣的自己去看看吧。我重点想介绍的是我的enode框架,框架的特色,以及使用的前提条件。

enode框架简介

  1. 框架名称:enode
  2. 框架特色:提供一个基于DDD设计思想,实现了CQRS + EDA + Event Sourcing + In Memory这些架构模式的,支持负载均衡的,轻量级应用开发框架。
  3. 开源地址:https://github.com/tangxuehua/enode
  4. nuget包Id:enode

使用该框架前需要了解或遵守以下几个约定:

  1. 一个command只允许导致一个聚合根的修改或一个聚合根的创建,如果违反这个规则,则框架不允许;
  2. 如果一个用户操作会涉及多个聚合根的修改,则需要通过saga (process manager)来实现;拥抱最终一致性,简单的说就是通过将command+domain event不断的串联来最终实现最终一致性;如果想彻底的知道enode哪里与众不同,可以看一下源代码中的BankTransferSagaExample,相信这个会让你明白什么是我所说的事件驱动设计;
  3. 框架的核心编程思想是异步消息处理加最终一致性,所以,如果你想实现强一致性需求,那这个框架不太适合,至少目前没有提供这样的支持
  4. 框架的设计目标不是针对企业应用开发,传统企业应用一般访问量不大且要求强一致性事务;enode框架更多的是针对互联网应用,特别是为一些需要支持访问量大、高性能、可伸缩且允许最终一致性的互联网站点提供支持;看过:可伸缩性最佳实践:来自eBay的经验的人应该知道要实现一个可伸缩的互联网应用,异步编程和最终一致性是必须的;另外,因为如果数据量一大,那我们一般会把数据分开存放,这就意味着,如果你还想实现强一致性,那就要靠分布式事务。但是很不幸,分布式事务的成本代价太高。伸缩、性能和响应延迟都受到分布式事务协调成本的反面影响,随着依赖的资源数量用户访问数量的上升,这些指标都会以几何级数恶化。可用性亦受到限制,因为所有依赖的资源都必须就位。
  5. 框架定位:目前定位于单台机器上运行的单个应用内的CQRS架构前提下的command端的实现;如果要实现多台机器多个应用之间的分布式集成,则大家需要再进一步借助ESB来与更高层的SOA架构集成;

enode框架架构图:

CQRS架构图

上面的架构图是enode框架的内部实现架构。当然,上面这个架构图并不是完整的CQRS架构图,而是CQRS架构图中command端的实现架构。完整的CQRS架构图一般如下:

从上图我们可以看到,传统的CQRS架构图,一般画的都比大范围,command端具体如何实现,实现方案有很多种。而enode框架,只是其中一种实现。

enode框架的内部实现说明

  1. 首先,client会发送command给command service,command service接受到command后,会通过一个command queue router来路由该command应该放到哪个command queue,每个command queue就是一个消息队列,队列里存放command。该消息队列是本地队列,但是支持消息的持久化,也就是说command被放入队列后,就算机器挂了,下次机器重启后,消息也不会丢失。另外,command queue我们可以根据需要配置多个,上图为了示意,只画了两个;
  2. command queue的出口端,有一个command processor,command processor的职责是处理command。但是command processor本身不直接处理command,直接处理command的是command processor内部的一些worker线程,每个worker线程会不断的从command queue中取出command,然后按照图中标出的5个步骤对command进行处理。可以看出,由于command processor中的worker线程都是在并行工作的,所以我们可以发现,同一时刻,会有多个command在被同时处理。为什么要这样做?因为client发送command到command queue的速度很快,比如每秒发送1W个command过来,也就是并发是1W,但是command processor如果内部只有单线程在处理command,那速度跟不上这个并发量,所以我们需要设计支持多个worker同时处理command,这样延迟就会降低;我们从架构图可以看到,command processor获取聚合根是从内存缓存(如支持分布式缓存的redis)获取性能比较高;持久化事件,用的是MongoDB,由于mongoDB性能也很高;如果觉得事件持久化到单台MongoDB server还是有瓶颈问题,那我们可以对MongoDB server做集群,然后对事件进行sharding,将不同的event存储到不同的MongoBD Server,这样,事件的持久化也不会成为瓶颈;这样,整个command processor的处理性能理论上可以很高,当然我还没测试过集群情况下性能可以达到多少;单个mongodb server,持久化事件的性能,5K不成问题;这里有一点借此在说明下,被持久化的其实不是单个事件,而是一个事件流,即EventStream。为什么是事件流是因为单个聚合根一次可能产生不止一个领域事件,但是这些事件比如一起被持久化,所以设计思路是把这些事件设计为一个事件流,然后将这个事件流作为一条mongodb的记录插入到mongodb;事件流在mongodb中的主键是聚合根ID+事件流的版本号,通过这两个联合字段作为主键,用来实现乐观锁;假如有两个事件流都是针对同一个聚合根的,且他们的版本号相同,那插入到mongodb时,会报主键索引冲突,这就是并发冲突了。需要对command进行自动重试(enode框架会帮你自动做掉这个自动重试)来解决这个问题;
  3. command processor中的worker处理完一个command后,会把产生的事件发布给一个合适的event queue。同样,内部也会有一个event queue router来路由到底该放到哪个event queue。那么event queue中的事件接下来要被如何处理呢?也就是event processor会做身事情呢?很简单,就是分发事件给所有的事件订阅者,即dispatch event to subscribers。那这些event subscribers都会做什么事情呢?一般是做两种处理:1)因为是采用CQRS架构,所以我们不能仅仅持久化领域事件,还要通过领域事件来更新CQRS的查询数据库(这种为了更新查询库的事件订阅者老外一般叫做denormalizer);由于更新查询库没有必要同步,所以设计event queue;2)上面提到过,有些操作会影响多个聚合根,比如银行转账,订单处理,等。这些操作本质上是一个流程,所以我们的方案是通过在领域事件的event handler中发送command来异步的实现串联整个处理流程;当然,如何实现这个流程,还是有很多问题需要讨论。我个人觉得比较靠谱的方案是通过process manager,类似BPM的思想,国外也有很多人把它叫做saga。对saga或process manager感兴趣的看官,可以看看微软的这个例子:http://msdn.microsoft.com/en-us/library/jj591569.aspx,对于如何用enode来实现一个process manager,由于信息太多,所以我接下来会写一篇文章专门系统的介绍。

回顾enode框架所使用的关键技术

基于整个enode框架的架构图以及上面的文字描述说明,我们在看一下上面最开始框架简介中提到的框架所使用的关键技术。

  1. DDD:指架构图中的domain model,采用DDD的思想去分析设计实现,enode框架会提供实现DDD所必要的基类聚合根以及触发领域事件的支持
  2. CQRS:指整个enode架构实现的是CQRS架构中的command端,CQRS架构的查询端,enode框架没做任何限制,我们可以随意设计;
  3. EDA:指整个编程模型的思路,都要基于事件驱动的思想,也就是领域模型的状态更改是基于响应事件的,聚合根之间的交互,也不是基于事务,而是基于事件驱动和响应;
  4. Event Sourcing:中文意思是事件溯源,关于什么是事件溯源,可以看一下这篇文章。通过事件溯源,我们可以不用ORM来持久化聚合根,而是只要持久化领域事件即可,当我们要还原聚合根时只要对该聚合根进行一次事件溯源即可;
  5. In Memory:是指整个domain model的所有数据都存储在内存缓存中,比如分布式缓存redis中,且缓存永远不会被释放。这样当我们要获取聚合根时,只要从内存缓存拿即可,所以叫in memory;
  6. Nosql:是指enode用到了redis,mongodb这样的nosql产品;
  7. 负载均衡支持:是指,基于enode框架的应用程序,可以方便的支持负载均衡;因为应用程序本身是无状态的,in memory是存储在全局的redis分布式缓存中,独立于应用本身;而event store则是用MongoDB,同样也是全局的,且也支持集群。所以,我们可以将基于enode框架开发的应用程序部署任意多份在不同的机器,然后做负载均衡,从而让我们的应用程序支撑更高的并发访问。

框架API使用简介

框架初始化

public void Initialize()
{
    var connectionString = "mongodb://localhost/EventDB";
    var eventCollection = Event@H_301_110@var eventPublishInfoCollection = EventPublishInfo@H_301_110@var eventHandleInfoCollection = EventHandleInfo";

    var assemblies = new Assembly[] { Assembly.GetExecutingAssembly() };

    Configuration
        .Create()
        .UseTinyObjectContainer()
        .UseLog4Net(log4net.config")
        .UseDefaultCommandHandlerProvider(assemblies)
        .UseDefaultAggregateRootTypeProvider(assemblies)
        .UseDefaultAggregateRootInternalHandlerProvider(assemblies)
        .UseDefaultEventHandlerProvider(assemblies)

        //使用MongoDB来支持持久化
        .UseDefaultEventCollectionNameProvider(eventCollection)
        .UseDefaultQueueCollectionNameProvider()
        .UseMongoMessageStore(connectionString)
        .UseMongoEventStore(connectionString)
        .UseMongoEventPublishInfoStore(connectionString,eventPublishInfoCollection)
        .UseMongoEventHandleInfoStore(connectionString,eventHandleInfoCollection)

        .UseAllDefaultProcessors(
            new string[] { CommandQueue" },RetryCommandQueue",EventQueue" })
        .Start();
}

command定义

[Serializable]
class ChangeNoteTitle : Command
{
    public Guid NoteId { get; set; }
    string Title { set; }
}

发送command到ICommandService

var commandService = ObjectContainer.Resolve<ICommandService>();
commandService.Send(new ChangeNoteTitle { NoteId = noteId,Title = Modified Note" });

Command Handler

class ChangeNoteTitleCommandHandler : ICommandHandler<ChangeNoteTitle> { void Handle(ICommandContext context,ChangeNoteTitle command) { context.Get<Note>(command.NoteId).ChangeTitle(command.Title); } }
Domain Model
[Serializable]
class Note : AggregateRoot<Guid>,IEventHandler<NoteCreated>,IEventHandler<NoteTitleChanged>
{
    private public DateTime CreatedTime { public DateTime UpdatedTime { set; }

    public Note() : base() { }
    public Note(Guid id,string title) : base(id)
    {
        var currentTime = DateTime.Now;
        RaiseEvent(new NoteCreated(Id,title,currentTime,currentTime));
    }

    void ChangeTitle(string title)
    {
        RaiseEvent(new NoteTitleChanged(Id,DateTime.Now));
    }

    void IEventHandler<NoteCreated>.Handle(NoteCreated evnt)
    {
        Title = evnt.Title;
        CreatedTime = evnt.CreatedTime;
        UpdatedTime = evnt.UpdatedTime;
    }
    void IEventHandler<NoteTitleChanged>.Handle(NoteTitleChanged evnt)
    {
        Title = evnt.Title;
        UpdatedTime = evnt.UpdatedTime;
    }
}
Domain Event
class NoteTitleChanged : Event { public NoteTitleChanged(Guid noteId,255)">string title,DateTime updatedTime) { NoteId = noteId; Title = title; UpdatedTime = updatedTime; } }
Event Handler
class NoteEventHandler : IEventHandler<NoteCreated>,255)">void Handle(NoteCreated evnt) { Console.WriteLine(string.Format(Note created,title:{0}void Handle(NoteTitleChanged evnt) { Console.WriteLine(Note title changed,evnt.Title)); } }

猜你在找的设计模式相关文章