前端之家收集整理的这篇文章主要介绍了
【数据结构】二叉树链式结构实现_BiTreeLink,
前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
#include "string.h"
#include "stdio.h"
#include "stdlib.h"
#include "io.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100 /* 存储空间初始分配量 */
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
/* 用于构造二叉树********************************** */
int index=1;
typedef char String[24]; /* 0号单元存放串的长度 */
String str;
Status StrAssign(String T,char *chars)
{
int i;
if(strlen(chars)>MAXSIZE)
return ERROR;
else
{
T[0]=strlen(chars);
for(i=1;i<=T[0];i++)
T[i]=*(chars+i-1);
return OK;
}
}
/* ************************************************ */
typedef char TElemType;
TElemType Nil=' '; /* 字符型以空格符为空 */
Status visit(TElemType e)
{
printf("%c ",e);
return OK;
}
typedef struct BiTNode /* 结点结构 */
{
TElemType data; /* 结点数据 */
struct BiTNode *lchild,*rchild; /* 左右孩子指针 */
}BiTNode,*BiTree;
/* 构造空二叉树T */
Status InitBiTree(BiTree *T)
{
*T=NULL;
return OK;
}
/* 初始条件: 二叉树T存在。操作结果: 销毁二叉树T */
void DestroyBiTree(BiTree *T)
{
if(*T)
{
if((*T)->lchild) /* 有左孩子 */
DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
if((*T)->rchild) /* 有右孩子 */
DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
free(*T); /* 释放根结点 */
*T=NULL; /* 空指针赋0 */
}
}
/* 按前序输入二叉树中结点的值(一个字符) */
/* #表示空树,构造二叉链表表示二叉树T。 */
void CreateBiTree(BiTree *T)
{
TElemType ch;
/* scanf("%c",&ch); */
ch=str[index++];
if(ch=='#')
*T=NULL;
else
{
*T=(BiTree)malloc(sizeof(BiTNode));
if(!*T)
exit(OVERFLOW);
(*T)->data=ch; /* 生成根结点 */
CreateBiTree(&(*T)->lchild); /* 构造左子树 */
CreateBiTree(&(*T)->rchild); /* 构造右子树 */
}
}
/* 初始条件: 二叉树T存在 */
/* 操作结果: 若T为空二叉树,则返回TRUE,否则FALSE */
Status BiTreeEmpty(BiTree T)
{
if(T)
return FALSE;
else
return TRUE;
}
#define ClearBiTree DestroyBiTree
/* 初始条件: 二叉树T存在。操作结果: 返回T的深度 */
int BiTreeDepth(BiTree T)
{
int i,j;
if(!T)
return 0;
if(T->lchild)
i=BiTreeDepth(T->lchild);
else
i=0;
if(T->rchild)
j=BiTreeDepth(T->rchild);
else
j=0;
return i>j?i+1:j+1;
}
/* 初始条件: 二叉树T存在。操作结果: 返回T的根 */
TElemType Root(BiTree T)
{
if(BiTreeEmpty(T))
return Nil;
else
return T->data;
}
/* 初始条件: 二叉树T存在,p指向T中某个结点 */
/* 操作结果: 返回p所指结点的值 */
TElemType Value(BiTree p)
{
return p->data;
}
/* 给p所指结点赋值为value */
void Assign(BiTree p,TElemType value)
{
p->data=value;
}
/* 初始条件: 二叉树T存在 */
/* 操作结果: 前序递归遍历T */
void PreOrderTraverse(BiTree T)
{
if(T==NULL)
return;
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
PreOrderTraverse(T->lchild); /* 再先序遍历左子树 */
PreOrderTraverse(T->rchild); /* 最后先序遍历右子树 */
}
/* 初始条件: 二叉树T存在 */
/* 操作结果: 中序递归遍历T */
void InOrderTraverse(BiTree T)
{
if(T==NULL)
return;
InOrderTraverse(T->lchild); /* 中序遍历左子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
InOrderTraverse(T->rchild); /* 最后中序遍历右子树 */
}
/* 初始条件: 二叉树T存在 */
/* 操作结果: 后序递归遍历T */
void PostOrderTraverse(BiTree T)
{
if(T==NULL)
return;
PostOrderTraverse(T->lchild); /* 先后序遍历左子树 */
PostOrderTraverse(T->rchild); /* 再后序遍历右子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
}
int main()
{
int i;
BiTree T;
TElemType e1;
InitBiTree(&T);
StrAssign(str,"ABDH#K###E##CFI###G#J##");
CreateBiTree(&T);
printf("构造空二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n",BiTreeEmpty(T),BiTreeDepth(T));
e1=Root(T);
printf("二叉树的根为: %c\n",e1);
printf("\n前序遍历二叉树:");
PreOrderTraverse(T);
printf("\n中序遍历二叉树:");
InOrderTraverse(T);
printf("\n后序遍历二叉树:");
PostOrderTraverse(T);
ClearBiTree(&T);
printf("\n清除二叉树后,BiTreeDepth(T));
i=Root(T);
if(!i)
printf("树空,无根\n");
return 0;
}