【数据结构】算法复杂度

前端之家收集整理的这篇文章主要介绍了【数据结构】算法复杂度前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,下面我们就这个问题给各位考生进行分析。
首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。
此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。
常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。
下面我们通过例子加以说明,让大家碰到问题时知道如何去解决
1、设三个函数f,g,h分别为 f(n)=100n^3+n^2+1000,g(n)=25n^3+5000n^2,h(n)=n^1.5+5000nlgn
请判断下列关系是否成立:
(1) f(n)=O(g(n))
(2) g(n)=O(f(n))
(3) h(n)=O(n^1.5)
(4) h(n)=O(nlgn)
这 里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的 两个函数,则T(n)=O(f(n))表示存在正的常数C和n0,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常 数。这么一来,就好计算了吧。

◆ (1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。
◆ (2)成立。与上同理。
◆ (3)成立。与上同理。
◆ (4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。

2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数
(1) i=1; k=0
while(i<n)
{ k=k+10*i;i++;
}
解答:T(n)=n-1, T(n)=O(n), 这个函数是按线性阶递增的。
(2) x=n; // n>1
while (x>=(y+1)*(y+1))
y++;
解答:T(n)=n1/2 ,T(n)=O(n1/2), 最坏的情况是y=0,那么循环的次数是n1/2次,这是一个按平方根阶递增的函数
(3) x=91; y=100;
while(y>0)
if(x>100)
{x=x-10;y--;}
else x++;
解答: T(n)=O(1), 这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有? 没。这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数

一个经验规则

有如下复杂度关系

c < log2N < n < n * Log2N < n^2 < n^3 < 2^n < 3^n < n!

其中c是一个常量,如果一个算法的复杂度为c 、 log2N 、n 、 n*log2N,那么这个算法时间效率比较高 ,如果是 2^n,3^n,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

猜你在找的数据结构相关文章