【数据结构】——排序算法——2.2、快速排序
一、先上维基的图:
图二、快速排序实例
分类 | 排序算法 |
---|---|
数据结构 | 不定 |
最差时间复杂度 | |
最优时间复杂度 | |
平均时间复杂度 | |
最差空间复杂度 | 根据实现的方式不同而不同 |
二、描述
快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。举个例子,军训时第一次集合,大家一时间混乱了,不知道怎么排,这时候教官随便抓了个人,说以该同学为基准,高的站左边,矮的站右边。此时,基本就把队伍分为高低两大阵营。那么,在每个小区间内,又进行同样的操作,迭代到每个区间内只有一个人,那么操作便结束了!
步骤为:
- 从数列中挑出一个元素,称为"基准"(pivot),
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
三、Java程序
非wiki版:
public class Qsorta { public static void qsort_asc(int source[],int low,int high){ int i,j,x; if(low < high){ i = low; j = high; x = source[i]; while(i<j){ while(i<j&& source[j]>x ){ j--; } if(i<j){ source[i] = source[j]; i++; } while(i<j&& source[i] < x){ i++; } if(i<j){ source[j] = source[i]; j--; } } source[i] = x; qsort_asc(source,low,i-1); qsort_asc(source,i+1,high); } } public static void main(String[] args){ int[] a = {4,2,1,6,3,-5,85}; int i; qsort_asc(a,a.length-1); for(i=0;i<a.length-1;i++) System.out.println("a" + i + " is "+a[i]); } }
wiki版:
import java.util.Comparator; import java.util.Random; public class Quicksort { public static final Random RND = new Random(); private static void swap(Object[] array,int i,int j) { Object tmp = array[i]; array[i] = array[j]; array[j] = tmp; } private static <E> int partition(E[] array,int begin,int end,Comparator<? super E> cmp) { int index = begin + RND.nextInt(end - begin + 1); E pivot = array[index]; swap(array,index,end); for (int i = index = begin; i < end; ++ i) { if (cmp.compare(array[i],pivot) <= 0) { swap(array,index++,i); } } swap(array,end); return (index); } private static <E> void qsort(E[] array,Comparator<? super E> cmp) { if (end > begin) { int index = partition(array,begin,end,cmp); qsort(array,index - 1,index + 1,cmp); } } public static <E> void sort(E[] array,Comparator<? super E> cmp) { qsort(array,array.length - 1,cmp); } } /* * more efficient implements for quicksort. <br /> * use left,center and right median value (@see #median()) for the pivot,and * the more efficient inner loop for the core of the algorithm. */ class Sort { public static final int CUTOFF = 11; /** * quick sort algorithm. <br /> * * @param arr an array of Comparable items. <br /> */ public static <T extends Comparable<? super T>> void quicksort( T[] arr ) { quickSort( arr,arr.length - 1 ); } /** * get the median of the left,center and right. <br /> * order these and hide the pivot by put it the end of * of the array. <br /> * * @param arr an array of Comparable items. <br /> * @param left the most-left index of the subarray. <br /> * @param right the most-right index of the subarray.<br /> * @return T */ public static <T extends Comparable<? super T>> T median( T[] arr,int left,int right ) { int center = ( left + right ) / 2; if ( arr[left].compareTo( arr[center] ) > 0 ) swapRef( arr,left,center ); if ( arr[left].compareTo( arr[right] ) > 0 ) swapRef( arr,right ); if ( arr[center].compareTo( arr[right] ) > 0 ) swapRef( arr,center,right ); swapRef( arr,right - 1 ); return arr[ right - 1 ]; } /** * internal method to sort the array with quick sort algorithm. <br /> * * @param arr an array of Comparable Items. <br /> * @param left the left-most index of the subarray. <br /> * @param right the right-most index of the subarray. <br /> */ private static <T extends Comparable<? super T>> void quickSort( T[] arr,int right ) { if ( left + CUTOFF <= right ) { //find the pivot T pivot = median( arr,right ); //start partitioning int i = left,j = right - 1; for ( ; ; ) { while ( arr[++i].compareTo( pivot ) < 0 ) ; while ( arr[--j].compareTo( pivot ) > 0 ) ; if ( i < j ) swapRef( arr,i,j ); else break; } //swap the pivot reference back to the small collection. swapRef( arr,right - 1 ); quickSort( arr,i - 1 ); //sort the small collection. quickSort( arr,i + 1,right ); //sort the large collection. } else { //if the total number is less than CUTOFF we use insertion sort instead (cause it much more efficient). insertionSort( arr,right ); } } /** * method to swap references in an array.<br /> * * @param arr an array of Objects. <br /> * @param idx1 the index of the first element. <br /> * @param idx2 the index of the second element. <br /> */ public static <T> void swapRef( T[] arr,int idx1,int idx2 ) { T tmp = arr[idx1]; arr[idx1] = arr[idx2]; arr[idx2] = tmp; } /** * method to sort an subarray from start to end * with insertion sort algorithm. <br /> * * @param arr an array of Comparable items. <br /> * @param start the begining position. <br /> * @param end the end position. <br /> */ public static <T extends Comparable<? super T>> void insertionSort( T[] arr,int start,int end ) { int i; for ( int j = start + 1; j <= end; j++ ) { T tmp = arr[j]; for ( i = j; i > start && tmp.compareTo( arr[i - 1] ) < 0; i-- ) { arr[ i ] = arr[ i - 1 ]; } arr[ i ] = tmp; } } }