【数据结构】关于二分法

前端之家收集整理的这篇文章主要介绍了【数据结构】关于二分法前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

二分法


例:假设有一个容量为n+1开始的数组,从小到大存储了n个数(从下标1开始存储)。给定给定数m,求出数组中值为m的元素的下标,如果未找到则返回0。

分析: 以11个数进行分析。

  1. 首先令左边界为 left=1 ,右边界为 right=11 mid=(left+r@H_502_119@ight)@H_404_132@/2 即为6,判断m跟num[6]的大小。

  2. 如果 num[mid]<m ,那么令 left=mid+1,mid=(left+right)/2 ;如果如果 nu@H_973_301@m[mid]>m ,那么令 right=mid1,mid=(left+right@H_444_403@)/2 ;如果 num[mid]==m ,则返回mid。

  3. 重复过程2,直到结束。可以得到下面这张图。
int fun(int num[],int length,int m)
{
    int left = 1,right = length-1;
    //因为数组是从下标0开始length比数组最后一个元素小标大1。
    while(left<=right)
    {
        mid = (left+right)/2;
        if(num[mid]<m)
            {
                left=mid+1;
            }
        else if(num[mid]>m)
            {
                right=mid-1;
            }
        else
            return mid; 
    }
    return NOT FOUND;    
}

注意:

在这里是不能直接让left=mid或者right=mid的。因为可能会导致程序陷入死循环!

例:假设有一个数组num[1]=1,num[2]=2,现在要找m=3。

1.看一下令left=mid或者令right=mid的情况:

  1. left=1,right=2,mid=1

  2. 3>num[mid],因此,left=mid=1;right=2;跟步骤1完全一致,陷入步骤1,2的死循环,出不来了。

2.再看一下令left=mid-1或者right=mid+1的情况:

  1. left=1,因此,left=mid+1=2;right=2;mid=2

  2. 3>num[mid],因此,left=mid+1=3;right=2;left>right循环终止,返回NOT FOUND。
原文链接:https://www.f2er.com/datastructure/382532.html

猜你在找的数据结构相关文章