【数据结构】二叉树的遍历

前端之家收集整理的这篇文章主要介绍了【数据结构】二叉树的遍历前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
/* * 1.前序遍历的 递归实现和 非递归实现 * 2.中序遍历的 递归实现和 非递归实现 * 3.后序遍历的 递归实现和 非递归实现 * 4.根据两项遍历结果 重构树结构 */
#include <iostream>
#include <stdlib.h>
#include <stack>
using namespace std;

struct BTreeNode
{
    int m_nValue;           //数值域
    BTreeNode* m_pLeft;     //左孩子
    BTreeNode* m_pRight;    //右孩子
};


//重建二叉树
BTreeNode* ConstructionCore(int *startPre,int *endPre,int *startIn,int *endIn)
{
    //int rootValue = startPre[0];
    BTreeNode* root = new BTreeNode();
    root->m_nValue = startPre[0];
    root->m_pLeft = root->m_pRight = NULL;

    if(startPre == endPre)
    {
        if(startIn == endIn && *startPre == *startIn)
        {
            return root;
        }
        else
        {
            cout<<"Input Error!"<<endl;
            exit(-1);
        }
    }

    int *rootIn = startIn;
    while(rootIn <= endIn && *rootIn != root->m_nValue)
        ++rootIn;

    if(rootIn == endIn && *rootIn != root->m_nValue)
    {
        cout<<"Inout Error!"<<endl;
        exit(-1);
    }

    int leftlen = rootIn - startIn;
    int *leftPreEnd = startPre + leftlen;
    if(leftlen > 0)
    {
        root->m_pLeft = ConstructionCore(startPre+1,leftPreEnd,startIn,rootIn - 1);
    }
    if(leftlen < endPre - startPre)
    {
        root->m_pRight = ConstructionCore(leftPreEnd+1,endPre,rootIn+1,endIn);
    }
    return root;
}


BTreeNode* Construct(int *preorder,int *inorder,int len)
{
    if(preorder == NULL || inorder == NULL || len <= 0)
        return NULL;

    return ConstructionCore(preorder,preorder+len-1,inorder,inorder+len-1);
}


//二叉树的三种遍历方式
//前序遍历递归实现
void PreBTree(BTreeNode *pHead)
{
    if(pHead)
    {
        cout<< pHead->m_nValue << " ";
        PreBTree(pHead->m_pLeft);
        PreBTree(pHead->m_pRight);
    }
// cout<<endl;
}


//前序遍历非递归实现
void NRPreBTree(BTreeNode *pHead)
{
    stack<BTreeNode*> sk;
    while(pHead != NULL || !sk.empty())
    {
        if(pHead != NULL)
        {
            cout << pHead->m_nValue << " ";
            sk.push(pHead);
            pHead = pHead->m_pLeft;
        }
        else
        {
            pHead = sk.top();           //弹出父节点
            sk.pop();                   
            pHead = pHead->m_pRight;    
        }
    }
    cout<<endl;
}


//中序遍历的递归实现
void InBTree(BTreeNode *pHead)
{
    if(pHead != NULL)
    {
        InBTree(pHead->m_pLeft);
        cout << pHead->m_nValue << " ";
        InBTree(pHead->m_pRight);
    }
}


//中序遍历的非递归实现
void NRInBTree(BTreeNode *pHead)
{
    stack<BTreeNode*> sk;
    while(pHead != NULL || !sk.empty())
    {
        if(pHead != NULL)
        {
            //cout << pHead->m_nValue << " ";
            sk.push(pHead);
            pHead = pHead->m_pLeft;
        }
        else
        {
            pHead = sk.top();           //弹出父节点
            sk.pop();
            cout << pHead->m_nValue << " ";
            pHead = pHead->m_pRight;    
        }
    }
}

//后序遍历的递归实现
void PostBTree(BTreeNode *pHead)
{
    if(pHead != NULL)
    {
        PostBTree(pHead->m_pLeft);
        PostBTree(pHead->m_pRight);
        cout << pHead->m_nValue << " ";
    }
}


//后序遍历的非递归实现
void NRPostBTree(BTreeNode *pHead)
{
    stack<BTreeNode*> sk;
    BTreeNode* q;
    int flag = 0;
    do
    {
        while(pHead)
        {
            sk.push(pHead);
            pHead = pHead->m_pLeft;
        }
        q = NULL;
        flag = 1;
        while(!sk.empty() && flag)
        {
            pHead = sk.top();
            if(pHead->m_pRight == q)
            {
                sk.pop();
                cout<< pHead->m_nValue <<" ";
                q = pHead;
            }
            else
            {
                pHead = pHead->m_pRight;
                flag = 0;
            }
        }
    }
    while(!sk.empty());
}



int main()
{
    int pre[8] = {1,2,4,7,3,5,6,8};
    int in[8] = {4,1,8,6};
    BTreeNode *tr = Construct(pre,in,8);

    cout<<"前序遍历递归"<<endl;
    PreBTree(tr);
    cout<<endl<<"前序遍历非递归"<<endl;
    NRPreBTree(tr);

    cout<<"中序遍历递归"<<endl;
    InBTree(tr);
    cout<<endl<<"中序遍历非递归"<<endl;
    NRInBTree(tr);

    cout<<endl<<"后序遍历递归"<<endl;
    PostBTree(tr);
    cout<<endl<<"后序遍历非递归"<<endl;
    NRPostBTree(tr);
    cout<<endl;

    return 0;
}

猜你在找的数据结构相关文章