AVL树又称为高度平衡二叉树,高度越低效率越好
AVL树的性质:
1,AVL树首先是一棵二叉搜索树
2,左子树和右子树的高度差不超过1
3,左右子树都是AVL树
4,平衡因子控制平衡(右子树的高度-左子树的高度)
如下图所示:
AVL树的效率:
一棵AVL树有N个节点,其高度可以保持在log2^N,插入、删除和查找的时间复杂度也是log2^N
AVL树的插入:
在AVL树中插入一个节点时,在右子树插入则平衡因子+1,在左子树插入则平衡因子-1,当一个节点的平衡因子变成0,则说明它的高度没变,不需要继续向上更新,而当它的平衡因子变成1或-1,则需要进行单旋并调节平衡因子,当它的平衡因子变成2或-2时,则需要进行双旋。
左单旋:
右单旋:
左右双旋:
右左双旋:
注意:
上图中,我们并不能确定插入的是L节点或是R节点,所以需要分情况讨论其平衡因子的变化。
具体代码:
#include<iostream>
using namespace std;
template<class K,class V>
struct AVLTreeNode
{
K _key;
V _value;
AVLTreeNode<K,V>* _left;
AVLTreeNode<K,V>* _right;
AVLTreeNode<K,V>* _parent;
int _bf;//平衡因子
AVLTreeNode(const K& key,const V& value)
:_key(key),_value(value),_left(NULL),_right(NULL),_parent(NULL),_bf(0)
{}
};
template<class K,class V>
class AVLTree
{
typedef AVLTreeNode<K,V> Node;
public:
AVLTree()
:_root(NULL)
{}
void InOrder()
{
_InOrder(_root);
}
bool Insert(const K& key,const V& value)
{
if (_root == NULL)
{
_root = new Node(key,value);
return true;
}
Node * cur = _root;
Node * parent = NULL;
while (cur)
{
if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;
}
}
cur = new Node(key,value);
if (parent->_key < key)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
//更新平衡因子
//如果parent的平衡因子变为0,则说明这棵树的高度没变,不用更新它的父节点
//如果平衡因子变为1或-1,要继续更新父节点
//如果变为2或-2,则需要旋转
while (parent)
{
if (cur == parent->_left)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1) //当前平衡因子等于1或-1时,需要向上查看其父节点的平衡因子
{
cur = parent;
parent = cur->_parent;
}
else//平衡因子等于2或者-2,此时需要进行调节
{
if (parent->_bf == 2)
{
if (cur->_bf == 1)
{
RotateL(parent);
}
else
{
RotateRL(parent);
}
}
else
{
if (cur->_bf == -1)
{
RotateR(parent);
}
else
{
RotateLR(parent);
}
}
break;
}
}
return true;
}
bool IsBalance()
{
int height = 0;
return _IsBalance(_root,height);
}
protected:
//O(N)判断一棵树是不是平衡二叉树
bool _IsBalance(Node* root,int& height)
{
if (root == NULL)
{
height = 0;
return true;
}
int leftHeight = 0;
if (_IsBalance(root->_left,leftHeight) == false)
return false;
int rightHeight = 0;
if (_IsBalance(root->_right,rightHeight) == false)
return false;
height = leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
if (rightHeight - leftHeight != root->_bf)
{
cout << "平衡因子:"<<root->_bf<<" 平衡因子异常:" << root->_key << endl;
return false;
}
return abs(leftHeight - rightHeight) < 2;
}
//右旋
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
subL->_right = parent;
Node* ppNode = parent->_parent;
parent->_parent = subL;
if (ppNode == NULL)
{
_root = subL;
subL->_parent = NULL;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
subL->_parent = ppNode;
}
subL->_bf = parent->_bf = 0;
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
subR->_left = parent;
Node* ppNode = parent->_parent;
parent->_parent = subR;
if (ppNode == NULL)
{
_root = subR;
subR->_parent = NULL;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
subR->_bf = parent->_bf = 0;
}
//右左双旋
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
subR->_bf = 1;
parent->_bf = 0;
}
else
{
subR->_bf = parent->_bf = 0;
}
subRL->_bf = 0;
}
//左右双旋
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == 1)
{
parent->_bf = 0;
subL->_bf = -1;
}
else if (bf == -1)
{
subL->_bf = 0;
parent->_bf = 1;
}
else
{
subL->_bf = parent->_bf = 0;
subLR->_bf = 0;
}
}
//O(N^2)
bool _IsBalance(Node* root)
{
if (root == NULL)
return true;
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return abs(leftHeight - rightHeight) < 2
&& _IsBalance(root->_left)
&& _IsBalance(root->_right);
}
int Height(Node* root)
{
if (root == NULL)
return 0;
int left = Height(root->_left);
int right = Height(root->_right);
return left > right ? left + 1 : right + 1;
}
protected:
//中序遍历
void _InOrder(Node* root)
{
if (root == NULL)
return;
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
private:
Node* _root;
};
void TestAVL()
{
/*int a[] = { 16,30,7,11,9,26,18,14,19 };*/
//特殊场景
int a[] = { 4,2,6,1,3,5,15,16,14 }; AVLTree<int,int>tree; for (size_t i = 0; i < sizeof(a) / sizeof(a[0]); ++i) { tree.Insert(a[i],i); cout << "IsBalance?:" << tree.IsBalance() << "->InSert:"<<a[i]<<endl; } tree.InOrder(); cout << endl; cout << "IsBalance?:" << tree.IsBalance() << endl; cout << endl; }
原文链接:https://www.f2er.com/datastructure/382270.html