【深入了解cocos2d-x 3.x】定时器(scheduler)的使用和原理探究(2)

前端之家收集整理的这篇文章主要介绍了【深入了解cocos2d-x 3.x】定时器(scheduler)的使用和原理探究(2)前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

上篇说到定时器的使用方法,这篇主要分析它的实现原理。

1.哈希链表

cocos2dx封装了一个结构体,叫做UT_hash_handle,只要在自定义的结构体中声明这个结构体变量,就实现了哈希链表,并且能使用一系列的哈希链表专用的宏。这个结构体的具体实现如下:
typedef struct UT_hash_handle {
   struct UT_hash_table *tbl;
   void *prev;                       /* prev element in app order      */
   void *next;                       /* next element in app order      */
   struct UT_hash_handle *hh_prev;   /* prevIoUs hh in bucket order    */
   struct UT_hash_handle *hh_next;   /* next hh in bucket order        */
   void *key;                        /* ptr to enclosing struct's key  */
   unsigned keylen;                  /* enclosing struct's key len     */
   unsigned hashv;                   /* result of hash-fcn(key)        */
} UT_hash_handle;

这个结构体主要实现的是一个双向链表,具体实现哈希验证的还要看UT_hash_table 结构体
typedef struct UT_hash_table {
   UT_hash_bucket *buckets;
   unsigned num_buckets,log2_num_buckets;
   unsigned num_items;
   struct UT_hash_handle *tail; /* tail hh in app order,for fast append    */
   ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */

   /* in an ideal situation (all buckets used equally),no bucket would have
    * more than ceil(#items/#buckets) items. that's the ideal chain length. */
   unsigned ideal_chain_maxlen;

   /* nonideal_items is the number of items in the hash whose chain position
    * exceeds the ideal chain maxlen. these items pay the penalty for an uneven
    * hash distribution; reaching them in a chain traversal takes >ideal steps */
   unsigned nonideal_items;

   /* ineffective expands occur when a bucket doubling was performed,but 
    * afterward,more than half the items in the hash had nonideal chain
    * positions. If this happens on two consecutive expansions we inhibit any
    * further expansion,as it's not helping; this happens when the hash
    * function isn't a good fit for the key domain. When expansion is inhibited
    * the hash will still work,albeit no longer in constant time. */
   unsigned ineff_expands,noexpand;

   uint32_t signature; /* used only to find hash tables in external analysis */
#ifdef HASH_BLOOM
   uint32_t bloom_sig; /* used only to test bloom exists in external analysis */
   uint8_t *bloom_bv;
   char bloom_nbits;
#endif

} UT_hash_table;

然后看看与哈希链表相关的宏定义,使用这些宏能很方便的插入链表,删除链表,查找链表。
/**
 * 查找元素
 * head:哈希链表的头指针
 * findptr:要查找的元素指针
 * out:查找结果
 */
HASH_FIND_PTR(head,findptr,out) 
/**
 * 添加元素
 * head:哈希链表的头指针
 * ptrfield:要添加的元素指针
 * add:要添加的哈希链表元素
 */
HASH_ADD_PTR(head,ptrfield,add) 
/**
 * 替换元素
 * head:哈希链表的头指针
 * ptrfield:要替换的元素指针
 * add:要替换的哈希链表元素
 */
HASH_REPLACE_PTR(head,add)
/**
 * 删除
 * head:哈希链表的头指针
 * delptr:要删除的元素指针
 */
HASH_DEL(head,delptr) 

以上是引擎中实现的哈希链表的相关知识,接下来再看看与定时器相关的哈希链表。定时器的实现中,将一个定时器存储在哈希链表中,那么在scheduler是如何实现以后哈希链表的结构体的呢?如下:
// 不同优先级的update定时器的双向链表
typedef struct _listEntry
{
    struct _listEntry   *prev,*next;
    ccSchedulerFunc     callback;
    void                *target;
    int                 priority;
    bool                paused;
    bool                markedForDeletion; // selector will no longer be called and entry will be removed at end of the next tick
} tListEntry;
//内置的update定时器
typedef struct _hashUpdateEntry
{
    tListEntry          **list;        // Which list does it belong to ?
    tListEntry          *entry;        // entry in the list
    void                *target;
    ccSchedulerFunc     callback;
    UT_hash_handle      hh;
} tHashUpdateEntry;

// 自定义定时器
typedef struct _hashSelectorEntry
{
    ccArray             *timers;
    void                *target;
    int                 timerIndex;
    Timer               *currentTimer;
    bool                currentTimerSalvaged;
    bool                paused;
    UT_hash_handle      hh;
} tHashTimerEntry;

以上就是相关的哈希链表的知识,接下来从定义定时器的函数Node::schedule中一步一步的分析定时器是如何加入到哈希链表中的。

2.如何定义自定义定时器

首先,上一篇文章中说到了很多个自定义定时器的函数,但是最终会调用函数只有两个,分别是
    /**
     * 定义一个自定义的定时器
	 * selector:回调函数
	 * interval:重复间隔时间,重复执行间隔的时间,如果传入0,则表示每帧调用
	 * repeat:重复运行次数,如果传入CC_REPEAT_FOREVER则表示无限循环
	 * delay:延时秒数,延迟delay秒开始执行第一次回调
     */
    void schedule(SEL_SCHEDULE selector,float interval,unsigned int repeat,float delay);
	
    /**
     * 使用lambda函数定义一个自定义定时器
     * callback:lambda函数
	 * interval:重复间隔时间,重复执行间隔的时间,如果传入0,则表示每帧调用
	 * repeat:重复运行次数,如果传入CC_REPEAT_FOREVER则表示无限循环
	 * delay:延时秒数,延迟delay秒开始执行第一次回调
     * key:lambda函数的Key,用于取消定时器
     * @lua NA
     */
    void schedule(const std::function<void(float)>& callback,float delay,const std::string &key);

本文从传统的定义定时器的方法入手,也就是第一个方法。接下来看看这个方法的实现:
void Node::schedule(SEL_SCHEDULE selector,float delay)
{
    CCASSERT( selector,"Argument must be non-nil");
    CCASSERT( interval >=0,"Argument must be positive");

    _scheduler->schedule(selector,this,interval,repeat,delay,!_running);
}

看到其实还是调用_scheduler的schedule方法,那么_scheduler又是个什么鬼?
Scheduler *_scheduler;          ///< scheduler used to schedule timers and updates
查看定义可以知道是一个Scheduler 的指针,但是这个指针从哪里来?在构造函数中有真相
Node::Node(void)
{
    // set default scheduler and actionManager
    _director = Director::getInstance();
    _scheduler = _director->getScheduler();
    _scheduler->retain();
}

是从导演类中引用的。这一块暂时我们不管,接下来深入到_scheduler->schedule函数中分析,如下是函数的具体实现
void Scheduler::schedule(SEL_SCHEDULE selector,Ref *target,bool paused)
{
    CCASSERT(target,"Argument target must be non-nullptr");
    
	//定义并且查找链表元素
    tHashTimerEntry *element = nullptr;
    HASH_FIND_PTR(_hashForTimers,&target,element);
    
	//没找到
    if (! element)
    {
		//创建一个链表元素
        element = (tHashTimerEntry *)calloc(sizeof(*element),1);
        element->target = target;
        
		//添加到哈希链表中
        HASH_ADD_PTR(_hashForTimers,target,element);
        
        // Is this the 1st element ? Then set the pause level to all the selectors of this target
        element->paused = paused;
    }
    else
    {
        CCASSERT(element->paused == paused,"");
    }
    
	//检查这个元素的定时器数组,如果数组为空 则new 10个数组出来备用
    if (element->timers == nullptr)
    {
        element->timers = ccArrayNew(10);
    }
    else
    {
		//循环查找定时器数组,看看是不是曾经定义过相同的定时器,如果定义过,则只需要修改定时器的间隔时间
        for (int i = 0; i < element->timers->num; ++i)
        {
            TimerTargetSelector *timer = dynamic_cast<TimerTargetSelector*>(element->timers->arr[i]);
            
            if (timer && selector == timer->getSelector())
            {
                CCLOG("CCScheduler#scheduleSelector. Selector already scheduled. Updating interval from: %.4f to %.4f",timer->getInterval(),interval);
                timer->setInterval(interval);
                return;
            }
        }
		//扩展1个定时器数组
        ccArrayEnsureExtraCapacity(element->timers,1);
    }
    
	//创建一个定时器,并且将定时器加入到当前链表指针的定时器数组中
    TimerTargetSelector *timer = new (std::nothrow) TimerTargetSelector();
    timer->initWithSelector(this,selector,delay);
    ccArrayAppendObject(element->timers,timer);
    timer->release();
}


这一段代码具体分析了如何将自定义定时器加入到链表中,并且在链表中的存储结构是怎么样的,接下来看看内置的Update定时器。

3.如何定义Update定时器

Update定时器的开启方法有两个,分别是:
    /**
     * 开启自带的update方法,这个方法会每帧执行一次,默认优先级为0,并且在所有自定义方法执行之前执行
     */
    void scheduleUpdate(void);

    /**
     * 开启自带的update方法,这个方法会每帧执行一次,设定的优先级越小,越优先执行
     */
    void scheduleUpdateWithPriority(int priority);
第一个方法实际上是直接调用第二个方法,并且把优先级设置为0,我们直接看第二个方法就可以了。

void Node::scheduleUpdateWithPriority(int priority)
{
    _scheduler->scheduleUpdate(this,priority,!_running);
}
具体调用还是要进入到_scheduler->scheduleUpdate。
/** Schedules the 'update' selector for a given target with a given priority.
     The 'update' selector will be called every frame.
     The lower the priority,the earlier it is called.
     @since v3.0
     @lua NA
     */
    template <class T>
    void scheduleUpdate(T *target,int priority,bool paused)
    {
        this->schedulePerFrame([target](float dt){
            target->update(dt);
        },paused);
    }

可以看到这里主要还是调用了一个schedulePerFrame函数,并且传入了一个lambda函数。这个函数实际上调用的是target->update,接下来走进schedulePerFrame看看它的实现:
void Scheduler::schedulePerFrame(const ccSchedulerFunc& callback,void *target,bool paused)
{
	//定义并且查找链表元素
    tHashUpdateEntry *hashElement = nullptr;
    HASH_FIND_PTR(_hashForUpdates,hashElement);
	
	//如果找到,就直接改优先级
    if (hashElement)
    {
        // 检查优先级是否改变
        if ((*hashElement->list)->priority != priority)
        {
			//检查是否被锁定
            if (_updateHashLocked)
            {
                CCLOG("warning: you CANNOT change update priority in scheduled function");
                hashElement->entry->markedForDeletion = false;
                hashElement->entry->paused = paused;
                return;
            }
            else
            {
            	// 在这里先停止到update,后面会加回来 
                unscheduleUpdate(target);
            }
        }
        else
        {
            hashElement->entry->markedForDeletion = false;
            hashElement->entry->paused = paused;
            return;
        }
    }

    // 优先级为0,加入到_updates0List链表中,并且加入到_hashForUpdates表中
    if (priority == 0)
    {
        appendIn(&_updates0List,callback,paused);
    }
	// 优先级小于0,加入到_updatesNegList链表中,并且加入到_hashForUpdates表中
    else if (priority < 0)
    {
        priorityIn(&_updatesNegList,paused);
    }
	// 优先级大于0,加入到_updatesPosList链表中,并且加入到_hashForUpdates表中
    else
    {
        // priority > 0
        priorityIn(&_updatesPosList,paused);
    }
}
在这里看上去逻辑还是很清晰的,有两个函数要重点分析一下,分别是
void Scheduler::appendIn(_listEntry **list,const ccSchedulerFunc& callback,bool paused)
void Scheduler::priorityIn(tListEntry **list,bool paused)

第一个用于添加默认优先级,第二个函数用于添加指定优先级的。首先看添加默认优先级的。
void Scheduler::appendIn(_listEntry **list,bool paused)
{
	//创建一个链表元素
    tListEntry *listElement = new tListEntry();

    listElement->callback = callback;
    listElement->target = target;
    listElement->paused = paused;
    listElement->priority = 0;
    listElement->markedForDeletion = false;
	
	//添加到双向链表中
    DL_APPEND(*list,listElement);

    //创建一个哈希链表元素
    tHashUpdateEntry *hashElement = (tHashUpdateEntry *)calloc(sizeof(*hashElement),1);
    hashElement->target = target;
    hashElement->list = list;
    hashElement->entry = listElement;
	//添加到哈希链表中
    HASH_ADD_PTR(_hashForUpdates,hashElement);
}

接下来看另一个函数
void Scheduler::priorityIn(tListEntry **list,bool paused)
{
	//同上一个函数
    tListEntry *listElement = new tListEntry();

    listElement->callback = callback;
    listElement->target = target;
    listElement->priority = priority;
    listElement->paused = paused;
    listElement->next = listElement->prev = nullptr;
    listElement->markedForDeletion = false;

    //如果链表为空
    if (! *list)
    {
        DL_APPEND(*list,listElement);
    }
    else
    {
        bool added = false;
		//保证链表有序
        for (tListEntry *element = *list; element; element = element->next)
        {
			// 如果优先级小于当前元素的优先级,就在这个元素前面插入
            if (priority < element->priority)
            {
                if (element == *list)
                {
                    DL_PREPEND(*list,listElement);
                }
                else
                {
                    listElement->next = element;
                    listElement->prev = element->prev;

                    element->prev->next = listElement;
                    element->prev = listElement;
                }

                added = true;
                break;
            }
        }

        //如果新加入的优先级最低,则加入到链表的最后
        if (! added)
        {
            DL_APPEND(*list,listElement);
        }
    }

    //同上一个函数
    tHashUpdateEntry *hashElement = (tHashUpdateEntry *)calloc(sizeof(*hashElement),1);
    hashElement->target = target;
    hashElement->list = list;
    hashElement->entry = listElement;
    HASH_ADD_PTR(_hashForUpdates,hashElement);
}
本文简单的分析了哈希链表以及定时器的存储和添加下一篇文章将分析定时器是如何运转起来的。

猜你在找的Cocos2d-x相关文章