GLverts表示给显卡绘制的顶点数
GLcalls表示代表每一帧中OpenGL指令的调用次数
FPS这个是帧率不多说
主要看第二个“GLcalls”代表每一帧中OpenGL指令的调用次数,这个数字越小,程序的绘制性能就越好。
简介
在游戏的绘制渲染中,往往消耗很多资源和内存,当绘制精灵数量越多,游戏的卡顿会很明显,为了优化和提升渲染效率。Cocos2d-x为我们提供了Auto-batching和SpriteBatchNode。
Auto-batching 意思是Renderer将多次draw的调用打包成一次big Draw 调用。(又名批处理)。
SpriteBatchNode 主要用于批量绘制精灵提高精灵的绘制效率的,需要绘制的精灵数量越多,效果越明显。
Auto-batching
在3.0版本实现了引擎的逻辑代码与渲染代码的分离,实现了Auto Batch与Auto Culling功能。不再推荐使用SpriteBatchNode提高精灵的绘制效率。
Auto-culling的支持,Sprite在绘制时会进行检查,超出屏幕的不会发给渲染。
Auto-batching的渲染流程
现在,一个渲染流程是这样的:
(1)drawScene开始绘制场景
(2)遍历场景的子节点,调用visit函数,递归遍历子节点的子节点,以及子节点的子节点的子节点,以及…
(4)初始化QuadCommand对象,这就是渲染命令,会丢到渲染队列里
(5)丢完QuadCommand就完事了,接着就交给渲染逻辑处理了。
(6)是时候轮到渲染逻辑干活干活,遍历渲染命令队列,这时候会有一个变量,用来保存渲染命令里的材质ID,遍历过程中就拿当前渲染命令的材质ID和上一个的材质ID对比,如果发现是一样的,那就不进行渲染,保存一下所需的信息,继续下一个遍历。好,如果这时候发现当前材质ID和上一个材质ID不一样,那就开始渲染,这就算是一个渲染批次了。
(7) 因此,如果我们创建了10个材质相同的对象,但是中间夹杂了一个不同材质的对象,假设它们的渲染命令在队列里的顺序是这样的:2个A,3个A,1个B,1个A,2个A,2个A。那么前面5个相同材质的对象A会进行一次渲染,中间的一个不同材质对象B进行一次渲染,后面的5个相同材质的对象A又进行一次渲染。一共会进行三次批渲染。
SpriteBatchNode
它是批处理绘制精灵,主要是用来提高精灵的绘制效率的,需要绘制的精灵数量越多,效果越明显。因为cocos2d-x采用opengl es绘制图片的,opengl es绘制每个精灵都会执行:open-draw-close流程。而SpriteBatchNode是把多个精灵放到一个纹理上,绘制的时候直接统一绘制该texture,不需要单独绘制子节点,这样opengl es绘制的时候变成了:open-draw()-draw()…-draw()-close(),节省了多次open-close的时间。SpriteBatchNode内部封装了一个TextureAtlas(纹理图集,它内部封装了一个Texture2D)和一个Array(用来存储SpriteBatchNode的子节点:单个精灵)。注意:因为绘制的时候只open-close一次,所以SpriteBatchNode对象的所有子节点都必须和它是用同一个texture(同一张图片)。
在addChild的时候会检查子节点纹理的名称跟SpriteBatchNode的是不是一样,如果不一样就会出错。
// check Sprite is using the same texture id
CCASSERT(sprite->getTexture()->getName() == _textureAtlas->getTexture()->getName(),"CCSprite is not using the same texture id");
SpriteBatchNode和SpriteFrameCache结合使用代码示例
必须保证SpriteFrameCache和SpriteBatchNode加载的是同一纹理贴图。
SpriteBatchNode vs. Auto-batching
在3.0版本中提供了新的渲染机制,实现引擎逻辑代码和渲染的分离。该版本依然支持SpriteBatchNode,和以前的版本保持一致。但是不再推荐使用SpriteBatchNode。
Auto-culling的支持,Sprite在绘制时会进行检查,超出屏幕的不会发给渲染。
使用Auto-batching
·需确保精灵对象拥有相同的TextureId(精灵表单spritesheet);
·确保他们都使用相同的材质和混合功能
·不再把精灵添加SpriteBatchNode上
·避免打乱QuadCommand队列
Auto-batching拥有更好的性能提升。
下面通过代码来分析几种符合Auto-batching使用的情况
1、使用同一图片生成精灵,加到场景中。此种情况最简单,就是重复添加同一个精灵。 由于满足Auto-batching的条件。此时的渲染批次为2.(首先,即使我一个精灵也不创建,渲染批次也至少是1,加上刚刚这重复添加的精灵的渲染)
2、使用精灵帧表单,加载生成添加不同的精灵。但是各个精灵的材质都是一样的,满足Auto-batching的条件。此时的渲染批次为2.(首先,即使我一个精灵也不创建,渲染批次也至少是1,加上刚刚这重复添加的精灵的渲染)
在实际使用中推荐使用这种方式。
3、此种情况假设在不同的zOrder下添加不同的精灵,在遍历子节点之前,其实还偷偷做了一件事情,那就是,调用sortAllChildren();函数对子节点进行排序,虽然重复添加不同材质生成的精灵,但是它们的zOrder不一样,根据zOrder,Auto-batching渲染命令被重新排序,根据材质相同加入渲染队列从而降低了渲染次数。
如果注释掉sprite2->setZOrder(1);你会发现渲染批次会升高。
Auto-batching是Cocos2d-x3.0新增的特性,目的是为了取代SpriteBatchNode,完成渲染的批处理,提高绘制效率。
至于它有什么特点,可以看看官方文档,这里主要想探讨Auto-batching一些条件限制,简单地从源码方面去分析。
主要想分析的问题就是:为什么不连续创建的精灵(相同纹理、相同混合函数、没有对shader做什么处理)不能满足Auto-batching的要求?
===========以下是回忆,是我对Auto-batching产生疑惑的过程,可以忽略不看=========
这得从前几天说起(小若:我们不是来听故事的!),我在更改之前SpriteBatchNode的教程,由于Cocos2d-x3.0新增了Auto-batching,于是就不得不把它也加进去。
这一加,不对劲,越写越发现自己对Auto-batching的理解有误,在我的脑海中,只要精灵是使用同一个纹理、没有更改blendFunc、没有更改shader,那么就满足Auto-batching,会自动将这些精灵加入到同一个渲染批次里,优化渲染速度。
可我才刚准备写一个例子,却发现,不对!没有自动批处理。我当时做了这样一个实验,代码如下:
我创建了两组精灵,分别使用sprite0.png和sprite1.png图片,每组14100个(小若:为什么非得是14100,为什么不能是14000?你让我们这些强迫症的人怎么办?!)。
按照我对Auto-batching的误解,这两组精灵应该各自都能满足,都能分别作为一组批处理进行渲染。然而,运行结果如下:
GLcalls(渲染批次)竟然是16425次?这和想象中的完全不一样,不是应该是个位数么?
这颠覆了我对Auto-batching的理解,于是,我又做了一些实验,发现了一些谬论,但结果是好的,因为我知道,我对Auto-batching的理解一直都是错的。
关于我做的那几个实现,大家可以看看这个帖子:@L_404_1@
由于是使用Windows平台做测试的,然后我的电脑配置比较高(小若:这是在炫耀的意思么?敢亮出你的配置吗?),所以帧率不能作为参考。
总之,那个帖子得出的疑问是:为什么不连续创建的精灵(相同纹理、相同混合函数、没有对shader做什么处理)不能满足Auto-batching的要求?
一定是我对Auto-batching产生了误解,它应该还有一些我不知道的限制。
好,既然知道我对Auto-batching产生了误解了,我当然就要再一次去看官方文档了,首先是中文文档:
https://github.com/chukong/cocos-docs/blob/master/manual/framework/native/v3/auto-batching/zh.md
反复看了好几次,不行,完全找不到能对这个问题有帮助的内容,但是我找不到英文文档。
终于还是找到了,它并不是真正的文档,只是一些计划路线,但是对这个问题也很有帮助,标题是《Cocos2d(v.3.0)renderingpipelineroadmap》:
对着这份文档看,以及调试源码,总算弄明白这个问题了。
简单地说,要绘制的精灵(应该说是Node)先存放到队列里,然后由专门的渲染逻辑来渲染。对于队列中的精灵,一个个取出来(其实存取的不是精灵,这里先简单这么理解),发现材质一样的话(相同纹理、相同混合函数、相同shader),就放到一个批次里,如果发现不同的材质,则开始绘制之前连续的那些精灵(都在一个批次里)。然后继续取,继续判断材质。
如果相同材质的精灵,中间间隔了不同材质的精灵,那也没法在同一个批次里渲染。
这就是那个问题的答案:为什么不连续创建的精灵(相同纹理、相同混合函数、相同shader)不能满足Auto-batching的要求,因为只要中间有不同材质的渲染对象,就会中断,会先把之前连续的相同材质的对象进行批渲染。
========================以上是回忆,回忆结束========================
好了,上面是回忆的过程,并且已经有了大致的结论,现在正式来用代码解释。
笨木头花心贡献,啥?花心?不呢,是用心~
转载请注明,原文地址:http://www.benmutou.com/blog/archives/1006
渲染流程
现在,一个渲染流程是这样的:
(1)drawScene开始绘制场景
(2)遍历场景的子节点,调用visit函数,递归遍历子节点的子节点,以及子节点的子节点的子节点,以及…
(小若:够了!给我停!)
(4)初始化QuadCommand对象,这就是渲染命令,会丢到渲染队列里
(5)丢完QuadCommand就完事了,接着就交给渲染逻辑处理了。
(7)是时候轮到渲染逻辑干活干活,遍历渲染命令队列,这时候会有一个变量,用来保存渲染命令里的材质ID,遍历过程中就拿当前渲染命令的材质ID和上一个的材质ID对比,如果发现是一样的,那就不进行渲染,保存一下所需的信息,继续下一个遍历。好,如果这时候发现当前材质ID和上一个材质ID不一样,那就开始渲染,这就算是一个渲染批次了。
看官方的一张图就完全明白了:
(8)因此,如果我们创建了10个材质相同的对象,但是中间夹杂了一个不同材质的对象,假设它们的渲染命令在队列里的顺序是这样的:2个A,3个A,1个B,1个A,2个A,2个A。那么前面5个相同材质的对象A会进行一次渲染,中间的一个不同材质对象B进行一次渲染,后面的5个相同材质的对象A又进行一次渲染。一共会进行三次批渲染。
(小若:突然发现,第6条哪去了啊?被你吃了吗)
这么一说,太含糊了,我们再来一次,用代码来罗列。
首先是开始,简单点,看代码:
voidDisplayLinkDirector::mainLoop()