第二篇 MapReduce日志分析
做日志分析之前,我觉得要先了解下MapReduce,网上很多,你可以搜下,这位哥们讲的还不错 点击打开链接
日志长这样的:
<?PHP if ( ! defined('ROOT_PATH')) exit('No direct script access allowed'); ?> [2016-06-01 00:10:27] POST 218.82.131.157 /user/HealthCenter.PHP?m=submit uid=14&hash=dd16e3e4d0e8786f13166a4065f24fa0&num=13.0&type=1&time=1464711029 0(OK) [2016-06-01 08:10:27] POST 218.82.131.157 /user/HealthCenter.PHP?m=submit uid=14&hash=863fbf2535639c16d885a55c78dff665&num=13.0&type=1&time=1464739829 0(OK) [2016-06-01 09:10:28] POST 124.74.69.134 /user/HealthCenter.PHP?m=submit uid=14&hash=9a310b722e795e2673cdba76bea29b26&num=13.0&type=1&time=1464743429 0(OK) [2016-06-01 09:16:05] GET 124.74.69.134 /index/Main.PHP?hash=eac57627d3407963dab81da2bb07e378&page_num=1&page_size=10&time=1464743769&uid=8 0(OK) [2016-06-01 10:01:30] GET 124.74.69.134 /index/Main.PHP?hash=7979353ef669c61f75a5a7e9d39cd646&page_num=1&page_size=10&time=1464746494&uid=8 0(OK) [2016-06-01 10:10:28] POST124.74.69.134 /user/HealthCenter.PHP?m=submit uid=14&hash=98012832769b5a0e45f036e92032f1ef&num=13.0&type=1&time=1464747029 0(OK) [2016-06-01 10:11:12] GET 124.74.69.134 /index/Main.PHP?hash=77938b0fdf1b733a9e15d9a2055767d1&page_num=1&page_size=10&time=1464747076&uid=8 0(OK) [2016-06-01 10:48:00] GET 124.74.69.134 /index/Main.PHP?hash=1a1979e9fdcfca2f17bf1b287f4508aa&page_num=1&page_size=10&time=1464749284&uid=8 0(OK) [2016-06-01 10:48:42] POST 124.74.69.134 /user/Position.PHP uid=9&address=undefine&latitude=4.9E-324&time=1464749394&type=1&hash=d4aebe936762be3a0420b62a77e37b00&longitude=4.9E-324 0(OK)
分别是: 时间 请求方式 IP 请求地址 参数 返回值
每天产生一个,分别已Y-m-d.PHP 方式命名.
达到的目的是: 统计每天 每个接口的请求次数,以返回结果分组,
编写程序
<span style="font-size:14px;">/** * @ClassName: LogMapReduce.java * @author 273030282@qq.com * @version V1.0 * @Date 2016-7-11 10:20:11 * @Description: TODO * */ package www.com.cn; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class LogMapReduce extends Configured implements Tool { public static void main(String[] args) { Configuration conf = new Configuration(); try { int res = ToolRunner.run(conf,new LogMapReduce(),args); System.exit(res); } catch (Exception e) { e.printStackTrace(); } } @Override public int run(String[] args) throws Exception { Configuration conf = new Configuration(); final Job job = Job.getInstance(conf,"LogParaseMapReduce"); job.setJarByClass(LogMapReduce.class); FileInputFormat.setInputPaths(job,args[0]); job.setMapperClass(MyMapper.class); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileOutputFormat.setOutputPath(job,new Path(args[1])); boolean success = job.waitForCompletion(true); if (success) { System.out.println("process success!"); } else { System.out.println("process Failed!"); } return 0; } enum Counter{ LINESKIP,} static class MyMapper extends Mapper<LongWritable,Text,IntWritable> { private final static IntWritable one = new IntWritable(1); public void map(LongWritable key,Text value,Context context) throws IOException,InterruptedException { if ("".equals(value)) { return; } String line = value.toString(); if (line.length() == 0 || !"[".equals(line.substring(0,1))) { return; } try { String[] lines = line.split(" "); String data = lines[0].replace("[","") + "\t"; if ("GET".equals(lines[2])) { String url = ""; String[] urls = lines[4].split("[?]"); String[] params = urls[1].split("[&]"); if (params[0].indexOf('m') != -1) { url = urls[0] + "?" + params[0]; } else { url = urls[0]; } data += url + "\t" + lines[5]; } else if ("POST".equals(lines[2])) { data += lines[4] + "\t" + lines[6]; } Text out = new Text(data); context.write(out,one); } catch (ArrayIndexOutOfBoundsException e) { context.getCounter(Counter.LINESKIP).increment(1); } } } static class MyReducer extends Reducer<Text,IntWritable,IntWritable> { protected void reduce(Text key,Iterable<IntWritable> values,InterruptedException { int count = 0; for (IntWritable v: values) { count = count + 1; } context.write(key,new IntWritable(count)); } } }</span>
然后将程序打jar包:LogMapReduce.jar
打包时注意选择 Main class,这时候选择就不用在调用时指定包目录了
Shell脚本
脚本分为两个,一个执行脚本,一个运行执行的脚本
运行脚本 run.sh:
#! /bin/bash d=`date "+%Y-%m-%d %H:%M:%S"` echo "{$d} start..." file=$1; if [ -f ${file} ];then echo "${file} exists" else echo "${file} not exists" exit 0 fi #获取文件名 fileinfo=(${file//// }) filename=${fileinfo[$[${#fileinfo[@]}-1]]} info=(${filename//./ }) name=${info[0]} echo "hadoop put file to /api/put/${filename}" hadoop fs -put ${file} /api/put/${filename} echo "call LogMapReduce.jar" hadoop jar /home/hadoop/hadoop-2.7.0/share/hadoop/mapreduce/LogMapReduce.jar /api/put/${filename} /api/out/${name} echo "hive load into api_logs" hive -e "load data inpath '/api/out/${name}/part-r-00000' into table apis.api_logs" echo "delete /api/put/${filename}" hadoop fs -rm /api/put/${filename} echo "delete /api/out/${name}" hadoop fs -rmr /api/out/${name} echo "end" ~
大致的逻辑,接收传入的文件(含路径),然后分割,得到文件名,然后将文件put到hadoop,调用LogMapReduce.jar,将结果插入到hive,删除文件
运行执行的脚本 process_2016_06.sh:
#!/bin/sh for((i=5;i<31;i++)) do logdate=`printf "%'.02d" $i` ./run.sh /home/hadoop/data/2016-06-${logdate}.PHP done
也可以折腾在一起.
原文链接:https://www.f2er.com/centos/380752.html