Mahout 安装配置及一个简单测试

前端之家收集整理的这篇文章主要介绍了Mahout 安装配置及一个简单测试前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

Hadoop

http://www.jb51.cc/article/p-qvgmbiwv-bbs.html
风.fox

环境

Centos7 服务器
当前最新版 0.12.2

下载地址

http://archive.apache.org/dist/mahout/
http://archive.apache.org/dist/mahout/0.12.2/

  1. wget http://archive.apache.org/dist/mahout/0.12.2/apache-mahout-distribution-0.12.2.tar.gz
  2. tar -zxvf apache-mahout-distribution-0.12.2.tar.gz

这里放到 Hadoop 目录里

  1. mv apache-mahout-distribution-0.12.2 /usr/local/hadoop/mahout

环境变量设置

设置全局/etc/bashrc,当前用户~/.bashrc
这里使用当前用户

  1. vim ~/.bashrc

mahout环境变量

  1. export MAHOUT_HOME=/usr/local/hadoop/mahout
  2. export MAHOUT_CONF_DIR=$MAHOUT_HOME/conf
  3. export PATH=$MAHOUT_HOME/conf:$MAHOUT_HOME/bin:$PATH

hadoop环境变量

  1. export HADOOP_HOME=/usr/local/hadoop
  2. export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
  3. export PATH=$PATH:$HADOOP_HOME/bin
  4. export HADOOP_HOME_WARN_SUPPRESS=not_null

应用环境变量

  1. . ~/.bashrc

查询是否安装成功,

  1. mahout

若出现一下,表示安装成功

  1. arff.vector: : Generate Vectors from an ARFF file or directory
  2. baumwelch: : Baum-Welch algorithm for unsupervised HMM training
  3. canopy: : Canopy clustering
  4. cat: : Print a file or resource as the logistic regression models would see it
  5. cleansvd: : Cleanup and verification of SVD output
  6. clusterdump: : Dump cluster output to text
  7. clusterpp: : Groups Clustering Output In Clusters
  8. cmdump: : Dump confusion matrix in HTML or text formats
  9. cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
  10. cvb0_local: : LDA via Collapsed Variation Bayes,in memory locally.
  11. describe: : Describe the fields and target variable in a data set
  12. evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
  13. fkmeans: : Fuzzy K-means clustering
  14. hmmpredict: : Generate random sequence of observations by given HMM
  15. itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
  16. kmeans: : K-means clustering
  17. lucene.vector: : Generate Vectors from a Lucene index
  18. matrixdump: : Dump matrix in CSV format
  19. matrixmult: : Take the product of two matrices
  20. parallelALS: : ALS-WR factorization of a rating matrix
  21. qualcluster: : Runs clustering experiments and summarizes results in a CSV
  22. recommendfactorized: : Compute recommendations using the factorization of a rating matrix
  23. recommenditembased: : Compute recommendations using item-based collaborative filtering
  24. regexconverter: : Convert text files on a per line basis based on regular expressions
  25. resplit: : Splits a set of SequenceFiles into a number of equal splits
  26. rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>,SequenceFile<IntWritable,Text>}
  27. rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
  28. runAdaptiveLogistic: : score new production data using a probably trained and validated AdaptivelogisticRegression model
  29. runlogistic: : Run a logistic regression model against CSV data
  30. seq2encoded: : Encoded Sparse Vector generation from Text sequence files
  31. seq2sparse: : Sparse Vector generation from Text sequence files
  32. seqdirectory: : Generate sequence files (of Text) from a directory
  33. seqdumper: : Generic Sequence File dumper
  34. seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
  35. seqwiki: : Wikipedia xml dump to sequence file
  36. spectralkmeans: : Spectral k-means clustering
  37. split: : Split Input data into test and train sets
  38. splitDataset: : split a rating dataset into training and probe parts
  39. ssvd: : Stochastic SVD
  40. streamingkmeans: : Streaming k-means clustering
  41. svd: : Lanczos Singular Value Decomposition
  42. testnb: : Test the Vector-based Bayes classifier
  43. trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
  44. trainlogistic: : Train a logistic regression using stochastic gradient descent
  45. trainnb: : Train the Vector-based Bayes classifier
  46. transpose: : Take the transpose of a matrix
  47. validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
  48. vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy,they must fit in memory) and a list of Vectors
  49. vectordump: : Dump vectors from a sequence file to text
  50. viterbi: : Viterbi decoding of hidden states from given output states sequence

Mahout 和Hadoop 集成测试

首先,hadoop 要安装完成及启动

http://www.jb51.cc/article/p-qvgmbiwv-bbs.html

下载测试数据

http://archive.ics.uci.edu/ml/databases/synthetic_control/

  1. wget http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_control.data

hadoop 上传测试数据

  1. hadoop fs -mkdir -p ./testdata
  2. hadoop fs -put synthetic_control.data ./testdata

查看目录及文件

  1. hadoop fs -ls
  2. hadoop fs -ls ./testdata

使用Mahout中的kmeans聚类算法进行测试

  1. mahout -core org.apache.mahout.clustering.syntheticcontrol.kmeans.Job

XX执行完成,最后几行如下

  1. 1.0 : [distance=55.039831561905785]: [33.67,38.675,39.742,41.989,37.291,43.975,31.909,25.878,31.08,15.858,13.95,23.097,19.983,21.692,31.579,38.57,33.376,38.843,41.936,33.534,39.195,32.897,25.343,18.523,15.089,17.771,22.614,25.313,23.687,29.01,41.995,35.712,40.872,41.669,32.156,25.162,24.98,23.705,18.413,20.975,14.906,26.171,30.165,27.818,35.083,39.514,37.851,33.967,32.338,34.977,26.589,28.079,19.597,24.669,23.098,25.685,28.215,34.94,36.91,39.749] 16/11/24 16:47:52 INFO ClusterDumper: Wrote 6 clusters 16/11/24 16:47:52 INFO MahoutDriver: Program took 22175 ms (Minutes: 0.3695833333333333)

查看输出

  1. hadoop fs -ls ./output
  1. Found 15 items
  2. -rw-r--r-- 1 hadoop supergroup 194 2016-11-24 16:47 output/_policy
  3. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusteredPoints
  4. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-0
  5. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-1
  6. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-10-final
  7. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-2
  8. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-3
  9. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-4
  10. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-5
  11. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-6
  12. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-7
  13. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-8
  14. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/clusters-9
  15. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/data
  16. drwxr-xr-x - hadoop supergroup 0 2016-11-24 16:47 output/random-seeds

查看数据

  1. mahout vectordump -i ./output/data/part-m-00000

查看
http://itindex.net/detail/51681-mahout
http://www.jb51.cc/article/p-tjsywcyz-wa.html

猜你在找的CentOS相关文章