1.首先安装pip-install
在使用centos7的软件包管理程序yum安装Python-pip的时候会报一下错误:
No package python-pip available.
Error: Nothing to do
说没有python-pip软件包可以安装。
这是因为像centos这类衍生出来的发行版,他们的源有时候内容更新的比较滞后,或者说有时候一些扩展的源根本就没有。所以在使用yum来search python-pip的时候,会说没有找到该软件包。
因此为了能够安装这些包,需要先安装扩展源EPEL。EPEL(http://fedoraproject.org/wiki/EPEL) 是由 Fedora 社区打造,为 RHEL 及衍生发行版如 CentOS、ScientificLinux等提供高质量软件包的项目。
首先安装epel扩展源:
sudo yum -y install epel-release
然后安装python-pip:
sudo yum -y install python-pip
安装完之后别忘了清除一下cache:
sudo yum clean all
搞定!
2.在隔离容器中安装TensorFlow
推荐使用virtualenv 创建一个隔离的容器,来安装 TensorFlow. 这是可选的,但是这样做能使排查安装问
题变得更容易,照着敲命令就行了
安装主要分成下面四个步骤:
● Install pip and Virtualenv.(这一步装过了)
● Create a Virtualenv environment.
● Activate the Virtualenv environment and install TensorFlow in it.
● After the install you will activate the Virtualenv environment each time you want to use TensorFlow.
Install pip and Virtualenv:
# Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev python-virtualenv
# Mac OS X
$ sudo easy_install pip $ sudo pip install --upgrade virtualenv
Create a Virtualenv environment in the directory ~/tensorflow:
$ virtualenv --system-site-packages ~/tensorflow
Activate the environment:
$ source ~/tensorflow/bin/activate # If using bash $ source ~/tensorflow/bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change
Now,install TensorFlow just as you would for a regular Pip installation. First select the correct binary to install:
# Ubuntu/Linux 64-bit,cpu only,Python 2.7
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0rc0-cp27-none-linux_x86_64.whl
Finally install TensorFlow:
# Python 2
(tensorflow)$ pip install --upgrade $TF_BINARY_URL
出现了如下错误:
InstallationError: Command python setup.py egg_info Failed with error code 1 in /root/tensorflow/build/mock
解决方案是:
Distribute has been merged into Setuptools as of version 0.7. If you are using a version <=0.6,upgrade using :
pip install --upgrade setuptools
or
easy_install -U setuptools.
其实就是安装的egg需要升级一下把,我猜测
升级之后重新 :
等待一段时间,(我似乎看到tensorflow在用gcc编译c++,c,时间还挺长大概十来分钟)
看到
Successfully installed tensorflow protobuf six wheel mock numpy funcsigs pbr
Cleaning up…
就ok3.测试代码
@H_502_89@import tensorflow as tf import numpy as np # 使用 NumPy 生成假数据(phony data),总共 100 个点. x_data = np.float32(np.random.rand(2,100)) # 随机输入 y_data = np.dot([0.100,0.200],x_data) + 0.300 # 构造一个线性模型 b = tf.Variable(tf.zeros([1])) W = tf.Variable(tf.random_uniform([1,2],-1.0,1.0)) y = tf.matmul(W,x_data) + b # 最小化方差 loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) # 初始化变量 init = tf.initialize_all_variables() # 启动图 (graph) sess = tf.Session() sess.run(init) # 拟合平面 for step in xrange(0,201): sess.run(train) if step % 20 == 0: print step,sess.run(W),sess.run(b)
在命令行输入:
source ~/tensorflow/bin/activate
激活tensorflow环境,运行上述代码
(tensorflow)[root@www test]# python nihe.py
# 得到最佳拟合结果
W: [[0.100 0.200]],b: [0.300]
退出虚拟环境:
(tensorflow)$ source deactivate