我正在紧密循环中实现双线性插值并尝试使用SSE对其进行优化,但我从中获得零加速.
这是代码,非SIMD版本使用简单的向量结构,可以定义为struct Vec3f {float x,y,z;使用已实现的乘法和加法运算符:
#ifdef USE_SIMD const Color c11 = pixelCache[y1 * size.x + x1]; const Color c12 = pixelCache[y2 * size.x + x1]; const Color c22 = pixelCache[y2 * size.x + x2]; const Color c21 = pixelCache[y1 * size.x + x2]; __declspec(align(16)) float mc11[4] = { 1.0,c11.GetB(),c11.GetG(),c11.GetR() }; __declspec(align(16)) float mc12[4] = { 1.0,c12.GetB(),c12.GetG(),c12.GetR() }; __declspec(align(16)) float mc22[4] = { 1.0,c22.GetB(),c22.GetG(),c22.GetR() }; __declspec(align(16)) float mc21[4] = { 1.0,c21.GetB(),c21.GetG(),c21.GetR() }; // scalars in vector form for SSE const float s11 = (x2-x)*(y2-y); const float s12 = (x2-x)*(y-y1); const float s22 = (x-x1)*(y-y1); const float s21 = (x-x1)*(y2-y); __declspec(align(16)) float ms11[4] = {1.0,s11,s11}; __declspec(align(16)) float ms12[4] = {1.0,s12,s12}; __declspec(align(16)) float ms22[4] = {1.0,s22,s22}; __declspec(align(16)) float ms21[4] = {1.0,s21,s21}; __asm { movaps xmm0,mc11 movaps xmm1,mc12 movaps xmm2,mc22 movaps xmm3,mc21 movaps xmm4,ms11 movaps xmm5,ms12 movaps xmm6,ms22 movaps xmm7,ms21 mulps xmm0,xmm4 mulps xmm1,xmm5 mulps xmm2,xmm6 mulps xmm3,xmm7 addps xmm0,xmm1 addps xmm0,xmm2 addps xmm0,xmm3 movaps mc11,xmm0 } #else const Vec3f c11 = toFloat(pixelCache[y1 * size.x + x1]); const Vec3f c12 = toFloat(pixelCache[y2 * size.x + x1]); const Vec3f c22 = toFloat(pixelCache[y2 * size.x + x2]); const Vec3f c21 = toFloat(pixelCache[y1 * size.x + x2]); const Vec3f colour = c11*(x2-x)*(y2-y) + c21*(x-x1)*(y2-y) + c12*(x2-x)*(y-y1) + c22*(x-x1)*(y-y1); #endif
重新排列asm代码以重用寄存器(最后只有三个xmm寄存器)并没有产生任何影响.我也试过使用内在函数:
// perform bilinear interpolation const Vec3f c11 = toFloat(pixelCache[y1 * size.x + x1]); const Vec3f c12 = toFloat(pixelCache[y2 * size.x + x1]); const Vec3f c22 = toFloat(pixelCache[y2 * size.x + x2]); const Vec3f c21 = toFloat(pixelCache[y1 * size.x + x2]); // scalars in vector form for SSE const float s11 = (x2-x)*(y2-y); const float s12 = (x2-x)*(y-y1); const float s22 = (x-x1)*(y-y1); const float s21 = (x-x1)*(y2-y); __m128 mc11 = _mm_set_ps(1.f,c11.b,c11.g,c11.r); __m128 mc12 = _mm_set_ps(1.f,c12.b,c12.g,c12.r); __m128 mc22 = _mm_set_ps(1.f,c22.b,c22.g,c22.r); __m128 mc21 = _mm_set_ps(1.f,c21.b,c21.g,c21.r); __m128 ms11 = _mm_set_ps(1.f,s11); __m128 ms12 = _mm_set_ps(1.f,s12); __m128 ms22 = _mm_set_ps(1.f,s22); __m128 ms21 = _mm_set_ps(1.f,s21); mc11 = _mm_mul_ps(mc11,ms11); mc12 = _mm_mul_ps(mc12,ms12); mc22 = _mm_mul_ps(mc22,ms22); mc21 = _mm_mul_ps(mc21,ms21); mc11 = _mm_add_ps(mc11,mc12); mc11 = _mm_add_ps(mc11,mc22); mc11 = _mm_add_ps(mc11,mc21); Vec3f colour; _mm_storeu_ps(colour.array,mc11);
并无济于事.我错过了什么,或者在这里不可能获得任何额外的速度?
解决方法
为何浮点?
给定a,b,c,d和xerr的打包像素argb,yerr在0-256范围内,一个简单的例子是:
给定a,b,c,d和xerr的打包像素argb,yerr在0-256范围内,一个简单的例子是:
// ================================================================================================================= // xs_Bilerp // ================================================================================================================= finline uint32 xs_Bilerp (uint32 a,uint32 b,uint32 c,uint32 d,uint32 xerr,uint32 yerr) { #define xs_rbmask 0x00ff00ff #define xs_agmask 0xff00ff00 if (a==b && c==d && a==d) return a; const uint32 arb = a & xs_rbmask; const uint32 crb = c & xs_rbmask; const uint32 aag = a & xs_agmask; const uint32 cag = c & xs_agmask; const uint32 rbdx1 = (b & xs_rbmask) - arb; const uint32 rbdx2 = (d & xs_rbmask) - crb; const uint32 agdx1 = ((b & xs_agmask)>>8) - (aag >> 8); const uint32 agdx2 = ((d & xs_agmask)>>8) - (cag >> 8); const uint32 rb1 = (arb + ((rbdx1 * xerr) >> 8)) & xs_rbmask; const uint32 ag1 = (aag + ((agdx1 * xerr) )) & xs_agmask; const uint32 rbdy = ((crb + ((rbdx2 * xerr) >> 8)) & xs_rbmask) - rb1; const uint32 agdy = (((cag + ((agdx2 * xerr) )) & xs_agmask)>>8) - (ag1 >> 8); const uint32 rb = (rb1 + ((rbdy * yerr) >> 8)) & xs_rbmask; const uint32 ag = (ag1 + ((agdy * yerr) )) & xs_agmask; return ag | rb; }