这个接口的关键是该类的用户只需要知道一个公共接口,它接受用户可能抛出的几乎任何functor / callback机制.
struct Type1; struct Type2; // May be the same type as Type1 class MyRegistrationClass { public: /** * Clean and easy to understand public interface: * Handle registration of any functor matching _any_ of the following * std::function<void(Type1,Type2)> * std::function<void(Type2)> <-- move argument 2 into arg 1 * std::function<void()> * or any result of std::bind() requiring two or fewer arguments that * can convert to the above std::function< ... > types. */ template<typename F> void Register(F f) { doRegister(f); } private: std::list< std::function< void(Type1,Type2) > > callbacks; // Handle registration for std::function<void(Type1,Type2)> template <typename Functor> void doRegister(const Functor & functor,typename std::enable_if< !is_bind_expr<Functor> && functor_traits<decltype(&Functor::operator())>::arity == 2 >::type * = nullptr ) { callbacks.push_back( functor ); } // Handle registration for std::function<void(Type2)> by using std::bind // to discard argument 2 ... template <typename Functor> void doRegister(const Functor & functor,typename std::enable_if< !std::is_bind_expression< Functor >::value && functor_traits<decltype(&Functor::operator())>::arity == 1 >::type * = nullptr ) { // bind _2 into functor callbacks.push_back( std::bind( functor,std::placeholders::_2 ) ); } // Handle registration for std::function<void(Type2)> if given the results // of std::bind() template <typename Functor> void doRegister(const Functor & functor,typename std::enable_if< is_bind_expr<Functor> /////////////////////////////////////////////////////////////////////////// //// BEGIN Need arity of a bounded argument /////////////////////////////////////////////////////////////////////////// && functor_traits<decltype(Functor)>::arity == 1 /////////////////////////////////////////////////////////////////////////// //// END need arity of a bounded argument /////////////////////////////////////////////////////////////////////////// >::type * = nullptr ) { // Push the result of a bind() that takes a signature of void(Type2) // and push it into the callback list,it will automatically discard // argument1 when called,since we didn't bind _1 placeholder callbacks.push_back( functor ); } // And other "doRegister" methods exist in this class to handle the other // types I want to support ... }; // end class
使用enable_if<>的复杂性的唯一原因是打开/关闭某些方法.我们必须这样做,因为当我们想要将std :: bind()的结果传递给Register()方法时,如果我们有这样的简单签名,它可以模糊地匹配多个注册方法:
void doRegister( std::function< void(Type1,Type2) > arg ); void doRegister( std::function< void(Type2) > arg ); // NOTE: type2 is first arg void doRegister( std::function< void() > arg );
我没有重新发明轮子,而是引用了traits.hpp然后用我自己的名为“functor_traits”的特性助手包装它,它增加了对std :: bind()的支持
到目前为止,我已经提出了这个问题来识别有界函数“arity”…或者绑定结果所期望的参数数量的计数:
我试图找到绑定结果arity
#include <stdio.h> // Get traits.hpp here: https://github.com/kennytm/utils/blob/master/traits.hpp #include "traits.hpp" using namespace utils; using namespace std; void f1() {}; int f2(int) { return 0; } char f3(int,int) { return 0; } struct obj_func0 { void operator()() {}; }; struct obj_func1 { int operator()(int) { return 0; }; }; struct obj_func2 { char operator()(int,int) { return 0; }; }; /** * Count the number of bind placeholders in a variadic list */ template <typename ...Args> struct get_placeholder_count { static const int value = 0; }; template <typename T,typename ...Args > struct get_placeholder_count<T,Args...> { static const int value = get_placeholder_count< Args... >::value + !!std::is_placeholder<T>::value; }; /** * get_bind_arity<T> provides the number of arguments * that a bounded expression expects to have passed in. * * This value is get_bind_arity<T>::arity */ template<typename T,typename ...Args> struct get_bind_traits; template<typename T,typename ...Args> struct get_bind_traits< T(Args...) > { static const int arity = get_placeholder_count<Args...>::value; static const int total_args = sizeof...(Args); static const int bounded_args = (total_args - arity); }; template<template<typename,typename ...> class X,typename T,typename ...Args> struct get_bind_traits<X<T,Args...>> { // how many arguments were left unbounded by bind static const int arity = get_bind_traits< T,Args... >::arity; // total arguments on function being called by bind static const int total_args = get_bind_traits< T,Args... >::total_args; // how many arguments are bounded by bind: static const int bounded_args = (total_args - arity); // todo: add other traits (return type,args as tuple,etc }; /** * Define wrapper "functor_traits" that wraps around existing function_traits */ template <typename T,typename Enable = void > struct functor_traits; // Use existing function_traits library (traits.hpp) template <typename T> struct functor_traits<T,typename enable_if< !is_bind_expression< T >::value >::type > : public function_traits<T> {}; template <typename T> struct functor_traits<T,typename enable_if< is_bind_expression< T >::value >::type > { static const int arity = get_bind_traits<T>::arity; }; /** * Proof of concept and test routine */ int main() { auto lambda0 = [] {}; auto lambda1 = [](int) -> int { return 0; }; auto lambda2 = [](int,int) -> char { return 0;}; auto func0 = std::function<void()>(); auto func1 = std::function<int(int)>(); auto func2 = std::function<char(int,int)>(); auto oper0 = obj_func0(); auto oper1 = obj_func1(); auto oper2 = obj_func2(); auto bind0 = bind(&f1); auto bind1 = bind(&f2,placeholders::_1); auto bind2 = bind(&f1,placeholders::_1,placeholders::_2); auto bindpartial = bind(&f1,1); printf("action : signature : result\n"); printf("----------------------------------------\n"); printf("lambda arity 0: [](){} : %i\n",functor_traits< decltype(lambda0) >::arity ); printf("lambda arity 1: [](int){} : %i\n",functor_traits< decltype(lambda1) >::arity ); printf("lambda arity 2: [](int,int){} : %i\n",functor_traits< decltype(lambda2) >::arity ); printf("func arity 0: void() : %i\n",functor_traits< function<void()> >::arity ); printf("func arity 1: int(int) : %i\n",functor_traits< function<void(int)> >::arity ); printf("func arity 2: char(int,int) : %i\n",functor_traits< function<void(int,int)> >::arity ); printf("C::operator()() arity 0 : %i\n",functor_traits< decltype(oper0) >::arity ); printf("C::operator()(int) arity 1 : %i\n",functor_traits< decltype(oper1) >::arity ); printf("C::operator()(int,int) arity 2 : %i\n",functor_traits< decltype(oper2) >::arity ); /////////////////////////////////////////////////////////////////////////// // Testing the bind arity below: /////////////////////////////////////////////////////////////////////////// printf("bind arity 0: void() : %i\n",functor_traits< decltype(bind0) >::arity ); printf("bind arity 1: int(int) : %i\n",functor_traits< decltype(bind1) >::arity ); printf("bind arity 2: void(int,functor_traits< decltype(bind2) >::arity ); printf("bind arity X: void(int,1 ) : %i\n",functor_traits< decltype(bindpartial) >::arity ); return 0; }
虽然这个实现在gcc中使用libstdc,但是我不太确定这是否是一个可移植的解决方案,因为它试图分解std :: bind()的结果……几乎是私有的“_Bind”类,我们真的不应该这样做不需要像libstdc的用户那样做.
所以我的问题是:
如何在不分解std :: bind()结果的情况下确定绑定结果的arity?
和
我们如何实现尽可能多地支持有界参数的function_traits的完整实现?
解决方法
问题是任何数量的替代品可能都是格式良好的!
在a discussion on isocpp.org of this very topic年,Nevin Liber非常正确地写道:
For many function objects and functions,the concepts of arity,parameter type and return type don’t have a single answer,as those things are based on how it [the object] is being used,not on how it has been defined.
这是一个具体的例子.
struct X1 { void operator() () { puts("zero"); } void operator() (int) { puts("one"); } void operator() (int,int) { puts("two"); } void operator() (...) { puts("any number"); } template<class... T> void operator() (T...) { puts("any number,the sequel"); } }; static_assert(functor_traits<X1>::arity == ?????);
因此,我们实际可以实现的唯一接口是我们提供实际参数计数的接口,并询问是否可以使用该数量的参数调用x.
template<typename F> struct functor_traits { template<int A> static const int has_arity = ?????; };
…但是如果可以使用一个Foo类型的参数或两个类型为Bar的参数调用它呢?似乎只知道x的(可能的)arity是没有用的 – 它并没有真正告诉你如何调用它.要知道如何调用x,我们需要知道或多或少知道我们要传递给它的类型!
所以,在这一点上,STL至少以一种方式来拯救我们:std :: result_of. (但see here对于基于safer的基于decltype的替代结果;我在这里使用它只是为了方便.)
// std::void_t is coming soon to a C++ standard library near you! template<typename...> using void_t = void; template<typename F,typename Enable = void> struct can_be_called_with_one_int { using type = std::false_type; }; template<typename F> // SFINAE struct can_be_called_with_one_int<F,void_t<typename std::result_of<F(int)>::type>> { using type = std::true_type; }; template<typename F> // just create a handy shorthand using can_be_called_with_one_int_t = typename can_be_called_with_one_int<F>::type;
现在我们可以提出像can_be_called_with_one_int_t< int(*)(float)>这样的问题.或can_be_called_with_one_int_t< int(*)(std :: string&)>并得到合理的答案.
您可以为can_be_called_with_no_arguments,… with_Type2,… with_Type1_and_Type2构建类似的traits类,然后使用所有这三个特征的结果来构建x的行为的完整图片 – 至少是x的行为的一部分与您的特定图书馆相关.