gdb – 如何在调试器下列出在boost :: asio :: io_service中注册的处理程序?

前端之家收集整理的这篇文章主要介绍了gdb – 如何在调试器下列出在boost :: asio :: io_service中注册的处理程序?前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
鉴于运行应用程序,我想提取有关当前已注册的完整处理程序的信息.

处理程序已由A类注册.例如:

boost::asio::async_read(s,b,boost::bind(&A::F,this->shared_from_this(),boost::asio::placeholders::error,boost::asio::placeholders::bytes_transferred));

在调试器下,我可以访问适当的io_service变量.如何找出(A :: F,this,s,b)尚未完成的操作.

解决方法

我想稍微扩大问题的范围,以涵盖我认为最终目标的替代方案:调试异步处理程序.

示例程序

要通过示例显示调试,请从侦听端口4321的基本UDP echo服务器开始:

#include <boost/array.hpp>
#include <boost/asio.hpp>
#include <boost/bind.hpp>

using boost::asio::ip::udp;

class udp_echo
{
public:
  udp_echo(boost::asio::io_service& service,unsigned int port)
    : socket_(service,udp::endpoint(udp::v4(),port))
  {
    socket_.async_receive_from(
      boost::asio::buffer(buffer_),sender_,boost::bind(&udp_echo::handle_receive,boost::asio::placeholders::bytes_transferred));
  }

  void handle_receive(const boost::system::error_code& error,std::size_t bytes_transferred)
  {
    socket_.async_send_to(
      boost::asio::buffer(buffer_,bytes_transferred),boost::bind(&udp_echo::handle_send,boost::asio::placeholders::bytes_transferred));
  }

  void handle_send(const boost::system::error_code& error,std::size_t bytes_transferred)
  {
    socket_.close();  
  }

private:
  udp::socket socket_;
  boost::array<char,128> buffer_;
  udp::endpoint sender_;
};

int main()
{
  boost::asio::io_service service;
  udp_echo echo(service,4321);
  service.run();
}

这个简单的程序有一个异步调用链:

udp_echo::udp_echo()
{
  socket_.async_receive_from(...); --.
}                                    |
             .-----------------------'
             v
void udp_echo::handle_receive(...)
{
  socket_.async_send_to(...);  ------.
}                                    |
             .-----------------------'
             v
void udp_echo::handle_send()
{
  socket_.close(); 
}

处理程序跟踪

Boost 1.47引入了handler tracking.只需定义BOOST_ASIO_ENABLE_HANDLER_TRACKING和Boost.Asio就会将调试输出(包括时间戳)写入标准错误流.运行编程,并通过UDP发送“hello world”产生以下输出

@asio|1363273821.846895|0*1|socket@0xbf8c4e3c.async_receive_from // 1
@asio|1363273829.288883|>1|ec=system:0,bytes_transferred=12      // 2
@asio|1363273829.288931|1*2|socket@0xbf8c4e3c.async_send_to      // 3
@asio|1363273829.289013|<1|                                      // 4
@asio|1363273829.289026|>2|ec=system:0,bytes_transferred=12      // 5
@asio|1363273829.289035|2|socket@0xbf8c4e3c.close                // 6
@asio|1363273829.289075|<2|                                      // 7

它可以逐行读取:

>非处理程序(0)调用socket.async_receive_from(),创建处理程序1.
>输入处理程序1 socket.async_receive_from(),没有错误,已收到12个字节.
> Handler 1 socket.async_receive_from()调用socket.async_send_to(),创建处理程序2.
>退出处理程序1 socket.async_receive_from().
>输入处理程序2 socket.async_send_to(),已发送12个字节.
> Handler 2调用了socket.close().
>退出处理程序2 socket.async_send_to().

并直观地映射到以下内容

udp_echo::udp_echo()
{
  socket_.async_receive_from(...); --. // 1
}                                    |
             .-----------------------'
             v
void udp_echo::handle_receive(...)
{                                      // 2
  socket_.async_send_to(...);  ------. // 3
}                                    | // 4
             .-----------------------'
             v
void udp_echo::handle_send()
{                                      // 5
  socket_.close();                     // 6
}                                      // 7

GDB

通过GDB进行调试需要挖掘多个层.它有助于了解Boost.Asio的一些实现细节.以下是一些概念:

> io_service仅包含准备运行的处理程序.
>反应器通常包含工作操作,以及未准备好运行的完成处理程序的句柄.
> reactor将使用io_service注册自己.

这是一个调试会话:

(gdb) bt
#0  0x00ab1402 in __kernel_vsyscall ()
#1  0x00237ab8 in __epoll_wait_nocancel () from /lib/libc.so.6
#2  0x080519c3 in boost::asio::detail::epoll_reactor::run (this=0x80560b0,block=true,ops=...)
    at /opt/boost/include/boost/asio/detail/impl/epoll_reactor.ipp:392
#3  0x08051c2d in boost::asio::detail::task_io_service::do_run_one (
    this=0x8056030,lock=...,this_thread=...,ec=...)
    at /opt/boost/include/boost/asio/detail/impl/task_io_service.ipp:396
#4  0x08051e8a in boost::asio::detail::task_io_service::run (this=0x8056030,ec=...)
    at /opt/boost/include/boost/asio/detail/impl/task_io_service.ipp:153
#5  0x08051f50 in boost::asio::io_service::run (this=0xbfffe818)
    at /opt/boost/include/boost/asio/impl/io_service.ipp:59
#6  0x08049a44 in main () at example.cpp:48
(gdb) frame 6
#6  0x08049a44 in main () at example.cpp:48
48        service.run();

首先,需要找到反应堆服务.需要进行向下转换,因此我们使用调试器来定位某些类型:

(gdb) p service.service_registry_.init_keytab
init_key
init_key<boost::asio::datagram_socket_service<boost::asio::ip::udp> >
init_key<boost::asio::detail::epoll_reactor>
init_key<boost::asio::detail::task_io_service>

每个密钥都与特定服务相关联,所有服务都在service.service_registry_中的链表中维护.类型信息与它们相关联,允许我们识别所需的服务.

(gdb) set $service = service.service_registry_.first_service_
(gdb) p $service.key_.type_info_.__name
$1 = 0x8052b60
"N5boost4asio6detail14typeid_wrapperINS0_23datagram_socket_serviceINS0_2ip3udpEEEEE"

那就是boost :: asio :: datagram_socket_service< boost :: asio :: ip :: udp>,所以继续下一个:

(gdb) set $service = $service.next_
(gdb) p $service.key_.type_info_.__name
$2 = 0x8052cc0 "N5boost4asio6detail14typeid_wrapperINS1_13epoll_reactorEEE"

$service现在指向reactor服务器.根据init_key类型参数downcast服务:

(gdb) set $service = *('boost::asio::detail::epoll_reactor'*) $service

具有工作的优秀处理程序位于反应堆内的操作链表中:

(gdb) set $ops = $service.registered_descriptors_.live_list_.op_queue_
(gdb) set $op = $ops.front_
(gdb) p *$op
$3 = {<boost::asio::detail::task_io_service_operation> = {next_ = 0x0,func_ = 0x804c256
    <boost::asio::detail::reactive_socket_recvfrom_op<
    boost::asio::mutable_buffers_1,boost::asio::ip::basic_endpoint<
    boost::asio::ip::udp>,boost::_bi::bind_t<void,boost::_mfi::mf2<void,udp_echo,boost::system::error_code const&,unsigned int>,boost::_bi::list3<boost::_bi::value<udp_echo*>,boost::arg<1> (*)(),boost::arg<2> (*)()> > >::
    do_complete(boost::asio::io_service::io_service_impl*,boost::asio::detail::epoll_reactor::descriptor_state::operation*,size_t)>,task_result_ = 0},ec_ = {
    m_val = 11,m_cat = 0x13b2c8},bytes_transferred_ = 0,perform_func_ =
    0x80514c8 <boost::asio::detail::reactive_socket_recvfrom_op_base<
    boost::asio::mutable_buffers_1,boost::asio::ip::basic_endpoint<boost::asio::ip::udp> 
    >::do_perform(boost::asio::detail::reactor_op*)>}

另一个垂头丧气是必需的.将$op转换为func_成员函数指针所属的类.

(gdb) set $op = *('boost::asio::detail::reactive_socket_recvfrom_op<
boost::asio::mutable_buffers_1,boost::asio::ip::basic_endpoint<
boost::asio::ip::udp>,boost::_mfi::mf2<
void,boost::arg<2> (*)()> > >'*) $op

此操作包含所需信息.

缓冲区:

(gdb) p $op.buffers_ 
$4 = {<boost::asio::mutable_buffer> = {data_ = 0xbfffe77c,size_ = 128},<No data fields>}
(gdb) p &echo.buffer_
$5 = (boost::array<char,128u> *) 0xbfffe77c

这个例子:

(gdb) p $op.handler_.l_.a1_.t_ 
$6 = (udp_echo *) 0xbfffe768
(gdb) p &echo
$7 = (udp_echo *) 0xbfffe768

成员函数指针:

(gdb) p $op.handler_.f_.f_
$8 = (void (udp_echo::*)(udp_echo *,const boost::system::error_code &,unsigned int)) 0x80505b0 <
    udp_echo::handle_receive(boost::system::error_code const&,size_t)>

套接字信息:

(gdb) p $op.socket_ 
$9 = 10
(gdb) p echo.socket_.implementation.socket_ 
$10 = 10

在这种情况下,操作只知道本机套接字表示(文件描述符).确定它是什么套接字的一种有用方法查询lsof.

$/usr/sbin/lsof -i -P | grep a.out 
a.out     4265 ghost   10u  IPv4 1166143       UDP *:4321

因此,文件描述符10正在UDP 4321上侦听.

原文链接:https://www.f2er.com/c/116947.html

猜你在找的C&C++相关文章